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DISCLAIMER

This document provides guidance to EPA Regions concerning how the
Agency intends to exercise its discretion in implementing one aspect of the
CERCLA remedy selection process. The guidance is designed to implement
national policy on these issues.

Some of the statutory provisions described in this document contain
legally binding requirements. However, this document does not substitute for
those provisions or regulations, nor is it a regulation itself. Thus, it cannot
impose legally-binding requirements on EPA, States, or the regulated
community, and may not apply to a particular situation based upon the
circumstances. Any decisions regarding a particular remedy selection decision
will be made based on the statute and regulations, and EPA decision makers
retain the discretion to adopt approaches on a case-by-case basis that differ
from this guidance where appropriate.

Interested parties are free to raise questions and objection about the
substance of this guidance and the appropriateness of the application of this
guidance to a particular situation, and the Agency welcomes public input on
this document at any time. EPA may change this guidance in the future.




WHATITIS

WHO IT’S FOR

WHAT’S NEW

ABOUT THE REVISION

EPA’s Process for Conducting Probabilistic Risk Assessment is an update of
the 1989 Risk Assessment Guidance for Superfund (RAGS). Itis Volume III,

an update to the existing two-volume set of RAGS. Volume III: Part A

provides policy and guidance on conducting probabilistic risk assessment for
both human and ecological receptors.

RAGS Volume III: Part A is written primarily for risk assessors. Risk
assessment reviewers, remedial project managers, and risk managers involved
in Superfund site cleanup activities will also benefit from this addition to
RAGS.

RAGS Volume III: Part A provides guidance on applying probabilistic
analysis to both human health and ecological risk assessment. New
information and techniques are presented that reflect the views of EPA
Superfund program. A tiered approach is described for determining the
extent and scope of the modeling effort that is consistent with the risk
assessment objectives, the data available, and the information that may be
used to support remedial action decisions at Superfund hazardous waste sites.

RAGS Volume III: Part A contains the following information:

. For the risk assessor— updated policies and guidance; discussion and
examples of Monte Carlo modeling techniques for estimating
exposure and risk.

. For the risk manager and the remedial project manager—an
introduction to PRA, a chapter on communicating methods and
results of PRA with the public, and a chapter on the role of PRA in
decision making.
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PREFACE

Risk Assessment Guidance for Superfund (RAGS) Volume I11: Part A (hereafter referred to as
RAGS Volume 3: Part A) provides technical guidance on the application of probabilistic risk assessment
(PRA) methods to human health and ecological risk assessment in the U.S. Environmental Protection
Agency (EPA) Superfund program. RAGS Volume 3: Part A supplements existing human health and
ecological assessment guidance provided in the RAGS series. This guidance focuses on Monte Carlo
analysis (MCA) as a method of quantifying variability and uncertainty in risk. Primarily geared toward
the risk assessor, it is intended, both in content and format, to be most accessible to those readers who are
familiar with risk assessment and basic statistical concepts. Chapters 1, 2, 6, and 7 are also directed
towards risk managers. The term risk manager is used in this guidance to refer to individuals or entities
that serve as the decision makers at hazardous waste sites. The term is used to emphasize the separation
between risk assessment and risk management activities. Risk managers may include individual remedial
project mangers (RPMs), site partnering teams, senior EPA managers (Section Chiefs, Branch Chiefs, or
Division Directors), or other decision makers.

An attempt has been made in this document to define all relevant technical terms using plain
language and to illustrate concepts with examples. An exhibit at the beginning of each chapter provides
definitions of terms used in that chapter. In addition, a comprehensive definition of terms is provided in
Appendix E. Other useful information has been presented in exhibits placed throughout each chapter.
Bullets are used throughout the text to emphasize important concepts and policy statements related to the
use of PRA. References are listed at the end of each chapter.

RAGS Volume 3: Part A was developed by the Superfund Probabilistic Risk Assessment
Workgroup and the Ecological Risk Assessment Forum (ERAF); both are intra-Agency workgroups that
have focused on improving the Risk Assessment Guidance for Superfund and implementing Superfund
Reform activities. The guidance has undergone extensive review by Superfund and other programs
within the Agency. In February 2000, a draft of the guidance was announced in the Federal Register to
provide an opportunity for public comment (U.S. EPA, 2000a). In August 2000, a notice of peer review
was announced in the Federal Register (U.S. EPA, 2000b), and in November 2000, RAGS Volume 3:
Part A received a formal peer review from panelists outside the Agency.

The Agency may incorporate PRA under fund-lead and Potentially Responsible Party (PRP)-lead
risk assessments. Implementation of successful PRASs requires careful planning. EPA strongly
recommends that PRPs involve the Agency in all decisions regarding the planning, submittal, and
technical details of any PRA. Coordinating with EPA early in the process will help ensure that PRAS
conform to the recommended guidelines as part of the Superfund risk assessment process for protecting
human and ecological health. PRPs should submit workplans for Agency review before initiating any
PRA. Similarly, when EPA chooses to use PRA for an EPA-lead risk assessment, a PRA workplan will
assist in directing site investigation and risk assessment activities, whether conducted by EPA or an EPA
contractor. A workplan specifies contractor activities in the risk assessment and provides risk assessors
and risk managers with an opportunity to obtain internal feedback from knowledgeable EPA staff, prior
to initiating work on the assessment.

A tiered approach to PRA is advocated, which begins with a point estimate risk assessment.
Important considerations include the time required to perform the PRA, the additional resources involved
in developing the PRA, the quality and extent of data on exposure that will be used in the assessment,
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and the value added by conducting the PRA. Project scoping is an essential component of all risk
assessments and is especially important in PRA.

Implementation of a PRA usually requires special computer software that may be commercially
available or that may need to be custom-designed for a specific application. Although commercial
software packages are noted in this guidance, any mention or use of a particular product in RAGS
Volume 3: Part A does not constitute an endorsement of that product by the Agency.

1.0 WHAT IS THE PURPOSE OF RAGS VOLUME 3 PART A?

RAGS Volume 3: Part A addresses the technical and policy issues associated with the use of
PRA in EPA Superfund program. This guidance builds upon basic concepts of risk assessment outlined
in RAGS Volume | (U.S. EPA, 1989a; 2001), recent guidance for ecological risk assessment (U.S. EPA,
1992, 1994, 1997a, 1998a; 1999), and the Agency Probabilistic Analysis Policy document (U.S. EPA,
1997b). RAGS Volume 3: Part A addresses the use of PRA for both human health and ecological risk
assessments. RAGS Volume 3: Part A was developed to provide risk assessors and risk managers with
basic guidelines for incorporating PRA into Superfund site-specific risk assessments. It is not intended
to be a detailed technical reference on PRA methods, however, it does direct the reader to appropriate
literature on important technical subjects. A primary purpose of RAGS Volume 3: Part A is to help
prevent misuse and misinterpretation of PRA.

2.0 WHAT IS PROBABILISTIC RISK ASSESSMENT AND HOW IS IT USED IN RISK
CHARACTERIZATION?

PRA is a risk assessment that uses probability distributions to characterize variability or
uncertainty in risk estimates. In a PRA, one or more variables in the risk equation is defined as a
probability distribution rather than a single number. Similarly, the output of a PRA is a range or
probability distribution of risks experienced by the receptors. The evaluation of variability and
uncertainty is an important component of the risk characterization of all risk assessments. As stated in
the 1995 Risk Characterization memorandum from Administrator Carol Browner (U.S. EPA, 1995),

... we must fully, openly, and clearly characterize risks. In doing so, we will disclose the
scientific analyses, uncertainties, assumptions, and science policies which underlie our
decisions... There is value in sharing with others the complexities and challenges we face
in making decisions in the face of uncertainty.

In addition, the 1997 EPA Policy for Use of Probabilistic Analysis in Risk Assessment (U.S.
EPA, 1997D) states:

zz |t is the policy of the U.S. Environmental Protection Agency that such
probabilistic analysis techniques as Monte Carlo analysis, given adequate
supporting data and credible assumptions, can be viable statistical tools for
analyzing variability and uncertainty in risk assessments.

A more extensive general discussion of PRA can be found in Chapter 1 of the guidance. The use
of PRA in Superfund remedial decision making is presented in Chapter 7 of the guidance.
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3.0 WHAT ARE THE ADVANTAGES AND DISADVANTAGES OF PRA FOR REMEDIAL
DECISIONS?

The primary advantage of PRA within the Superfund program is that it can provide a
quantitative description of the degree of variability or uncertainty (or both) in risk estimates for both
cancer and non-cancer health effects and ecological hazards. The quantitative analysis of uncertainty and
variability can provide a more comprehensive characterization of risk than is possible in the point
estimate approach.

Another significant advantage of PRA is the additional information and potential flexibility it
affords the risk manager. Superfund remedy decisions are often based on an evaluation of the risk to the
individual at the reasonable maximum exposure (RME) level (U.S. EPA, 1990). The RME represents the
highest exposure reasonably likely to occur (U.S. EPA, 1989a). When using PRA, the risk manager can
select the RME from the high-end range of percentiles of risk, generally between the 90" and
99.9" percentiles, referred to in this guidance as the RME range.

However, PRA may not be appropriate for every site. Disadvantages of PRA are that it generally
requires more time, resources, and expertise on the part of the assessor, reviewer, and risk manager than a
point estimate approach.

4.0 How 1S RAGS VOLUME 3, PART A ORGANIZED?

Although the primary audience of this guidance is the risk assessor, Chapter 1 provides a basic
overview of PRA for risk assessors and risk managers. The centerpiece of RAGS Volume 3: Part A is the
tiered approach described in Chapter 2. The tiered approach is a framework that enables the risk
manager to decide if and when to undertake a PRA and to determine the appropriate level of complexity
for the PRA. Chapter 3 provides a description of using PRA for human health risk assessment.

Chapter 4 discusses the issues of using PRA for ecological risk assessment. Chapter 5 presents a
discussion of using PRA to determine preliminary remediation goals. Chapter 6 details issues associated
with communicating risk estimates developed with PRA. Chapter 7 provides information for risk
managers choosing to base remedial decisions on the results of a PRA.

Eight appendices to this guidance expand on technical aspects of topics important to PRA, such
as sensitivity analysis and selecting and fitting probability distributions.

5.0  WHAT ARE THE KEY GUIDING CONCEPTS IN RAGS VOLUME 3: PART A?
(1) Use atiered approach to incorporating PRA into site risk assessments.
(2) Submit a workplan for Agency review prior to initiating work on a PRA.
(3) Perform a point estimate assessment prior to considering a PRA.

(4) While PRA can provide a useful tool to characterize and quantify variability and uncertainty
in risk assessments, it is not appropriate for every site.
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(5) PRA generally requires more time, resources, and expertise on the part of the assessor,
reviewer, and risk manager than a point estimate risk assessment.

(6) The decision to use PRA is site-specific and is based on the complexity of the problems at the
site, the quality and extent of site-specific data, and the likely utility of the result.

(7) If the additional information provided from a PRA is unlikely to affect the risk management
decision, then it may not be prudent to proceed with a PRA. However, if there is a clear
value added from performing a PRA, then the use of PRA as a risk assessment tool generally
should be considered despite the additional resources that may be needed.

(8) Communicating the results of a PRA will be more challenging than communicating the
results of a point estimate risk assessment because PRA and its perspective will be new to
most participants.

(9) If the decision is made to conduct a PRA, it is important to include community in the
planning process. Communication on PRA may involve: providing the community with a
basic understanding of the principles of PRA, discussing the proposed workplan and inviting
comments on the proposed approach, discussing site-specific data, and communicating the
final results and how they impact decisions for the site.
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CHAPTER 1

OVERVIEW OF PROBABILISTIC APPROACH TO RISK ASSESSMENT

1.0 INTRODUCTION

This chapter is intended for risk managers and risk assessors as an overview of the probabilistic
approach to risk assessment in the context of the Superfund program at the U.S. Environmental
Protection Agency (EPA). The goals of this chapter are to provide the reader with information about
(1) the role of risk assessment in the Superfund program; (2) the basic concepts of probabilistic risk
assessment (PRA); (3) important policies and guiding principles for PRA, as outlined throughout this
guidance; and (4) the next steps that will be undertaken in the Superfund program to provide guidance on
PRA.

Section 1.1 (1.1.1-1.1.3) describes the role of risk assessment from three perspectives, including
the role of risk assessment in areas external to EPA, Agency-wide, and within Superfund. Section 1.1
(1.1.4) also introduces PRA and identifies its place in the Superfund program. Section 1.2 introduces the
basic concepts of PRA, including the key terms of variability, uncertainty, Monte Carlo analysis (MCA),
and reasonable maximum exposure (RME). PRA concepts are presented using a comparison between
PRA and the traditional point estimate approach. Sections 1.2.4 and 1.3 summarize the advantages and
disadvantages of PRA and point estimate risk assessment. Section 1.4 provides a summary of policies
and guiding principles for using PRA in the Superfund program. EPA’s policies on conducting PRA are
highlighted throughout the guidance using pointers and are linked to more detailed policy discussions in
other chapters in the guidance. Section 1.5 outlines the organization of this document and provides a
brief summary of the content of each subsequent chapter and appendix. Section 1.6 presents EPA’s next
steps for PRA implementation in the Superfund program.

Key terms used throughout this guidance include: Probabilistic Risk Assessment (PRA), Monte
Carlo Analysis (MCA), Probability Density Function (PDF), Cumulative Distribution Function (CDF),
Reasonable Maximum Exposure (RME), Sensitivity Analysis, Tiered Approach, Variability, Uncertainty,
and Preliminary Remediation Goal (PRG). Terms and their definitions are identified in an exhibit at the
beginning of each chapter. Terms and definitions relevant to Chapter 1 are presented in Exhibit 1-1. In
addition, a glossary of terms used throughout the guidance is given in Appendix E.

Page 1-1
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EXHIBIT 1-1

DEFINITIONS FOR CHAPTER 1

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Confidence Interval - A range of values that are likely to include a population parameter. Confidence intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95 percentile risk).
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty
in the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches.
For example, given a randomly sampled data set, a 95% confidence interval for the mean can be estimated by
deriving a sampling distribution from a Student's t distribution.

Confidence Limit - The upper or lower value of a confidence interval.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit. Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed. The number of dust particles in a volume of air is another example. Countably finite implies there is
an upper limit (e.g., days of work per year).

Credible Interval - A range of values that represent plausible bounds on a population parameter. Credible intervals
may describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95" percentile
risk). The term is introduced as an alternative to the term confidence interval when the methods used to
quantify uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian
approaches. For example, multiple estimates of an arithmetic mean may be available from different studies
reported in the literature - using professional judgment, these estimates may support a decision to describe a
range of possible values for the arithmetic mean.

CTE Risk - The estimated risk corresponding to the central tendency exposure.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable. Each value ¢ of the function is the probability that a random
observation x will be less than or equal to c.

Expected Value of Information (EVOI) - The expected increase in the value (or decrease in the loss) associated with
obtaining more information about quantities relevant to the decision process. EVOI is a measure of the
importance of uncertainty in risk and the potential for changing a risk management decision if uncertainty is
reduced (see Appendix D).

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or
measured from a population. It conveys the range of values and the count (or proportion of the sample) that
was observed across that range.

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and
using these inputs to calculate a range of risk values.

Numeric Stability - Stochastic variability, or "wobble" associated with random sampling, calculated as the average
percent change in the model output after rerunning Monte Carlo simulations with the same set of input
assumptions. Used as a metric for evaluating the adequacy of the number of iterations in a MCA.

Parameter - A value that characterizes the distribution of a random variable. Parameters commonly characterize the
location, scale, shape, or bounds of the distribution. For example, a truncated normal probability distribution
may be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max
[bounds]. It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic
mean ingestion rate).

Point Estimate - In statistical theory, a quantity calculated from values in a sample to estimate a fixed but unknown
population parameter. Point estimates typically represent a central tendency or upper bound estimate of
variability.
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EXHIBIT 1-1

DEFINITIONS FOR CHAPTER 1—Continued

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set
of point estimates for exposure and toxicity. Such point estimates of risk can reflect the CTE, RME, or
bounding risk estimate depending on the choice of inputs.

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk,
generally by assigning a probability distribution to represent variability or uncertainty in one or more
inputs to the risk equation.

Probability Density Function (PDF) - A function representing the probability distribution of a continuous
random variable. The density at a point refers to the probability that the variable will have a value in a
narrow range about that point.

Probability Distribution - A mathematical representation of the function that relates probabilities with
specified intervals of values for a random variable. Also called a probability model.

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random
variable. The mass at a point refers to the probability that the variable will have a value at that point.

Random Variable - A variable that may assume any value from a set of values according to chance. Discrete
random variables can assume only a finite or countably infinite number of values (e.g., number of rainfall
events per year). A random value is continuous if its set of possible values is an entire interval of
numbers (e.g., quantity of rain in a year).

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site
(U.S. EPA, 1989a). The intent of the RME is to estimate a conservative exposure case (i.e., well above
the average case) that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and
extent of contamination, to evaluate potential risk, and to develop alternatives for cleanup.

RME Risk - The estimated risk corresponding to the reasonable maximum exposure.

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes
in the values of the model’s input(s). Sensitivity analysis can provide a quantitative ranking of the model
inputs based on their relative contributions to model output variability and uncertainty. Common metrics
of sensitivity include:

»__ Pearson Correlation Coefficient - A statistic 7 that measures the strength and direction of linear
association between the values of two quantitative variables. The square of the coefficient (7)
is the fraction of the variance of one variable that is explained by the variance of the second
variable.

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable;
also called elasticity.

> Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic
r that measures the strength and direction of association between the ranks of the values (not
the values themselves) of two quantitative variables. See Pearson (above) for 7.

Stochastic Dominance - Implies no intersection between two or more CDFs. For example, if the CDF for A
and B do not overlap and the CDF for A is greater than the CDF for B, then at every cumulative percentile,
the value of A is greater than that of B. Therefore, it can be stated that distribution A stochastically
dominates distribution B. It should be noted that even when the CDFs for A and B do not overlap, the
PDFs for A and B can overlap.

Uncertainty -Lack of knowledge about specific variables, parameters, models, or other factors. Examples
include limited data regarding the concentration of a contaminant in an environmental medium and lack of
information on local fish consumption practices. Uncertainty may be reduced through further study.

Variability - True heterogeneity or diversity that characterizes an exposure variable or response in a
population. Further study (e.g., increasing sample size, n) will not reduce variability, but it can provide
greater confidence (e.g., lower uncertainty) in quantitative characterizations of variability).
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1.1 THE ROLE OF RISK ASSESSMENT IN SUPERFUND

The role of risk assessment in the Superfund program today is built upon a foundation of
scientific and management principles, policies, and laws that have been established over the past two
decades. Since the enactment of the Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA) in 1980 the risk assessment policies and guidance documents have evolved to
reflect advances in science and changes in federal regulations.

1.1.1 RiSK ASSESSMENT IN THE UNITED STATES

Risk assessment has a long history beginning in 1940. In 1983, the National Research Council
published Risk Assessment in the Federal Government: Managing the Process (NRC, 1983) which
outlines the four steps of risk assessment (hazard identification, dose-response, exposure assessment, and
risk characterization) that are used today.

The NRC addressed three main objectives in risk assessment: (1) assessment of the benefits of
separating the analytical process of risk assessment from the regulatory process of risk management;
(2) consideration of the feasibility of creating a single regulatory agency for the purpose of conducting all
government risk assessments; and (3) consideration of the feasibility of creating uniform guidelines for
risk assessment (NRC, 1983).

The Committee concluded that regulatory agencies should maintain a conceptual distinction
between risk assessment and risk management, and develop uniform inference guidelines in risk
assessment for use by all federal regulatory agencies. The Committee also recommended that Congress
establish a Board on Risk Assessment Methods in order to ensure that risk assessment procedures be
continuously reviewed and modified as the science advances. The Committee rejected the proposal for a
single federal risk assessment agency based on inadequate evidence to show that one administrative
structure would be more advantageous (NRC, 1983).

Since 1983, there have been ongoing advancements in the field of risk assessment. These
include: (1) a continued increasing role for risk assessment in the decision-making process of many
regulatory agencies, as exemplified by several bills introduced by the 103* and 104" Congresses in
1994-1995; (2) an increased awareness of the need for uncertainty analysis and for quantifying and
communicating uncertainties in risk estimates (Science and Judgement in Risk Assessment, NRC, 1994);
(3) guidance about more inclusive approaches to risk assessment, as exemplified by environmental health
legislation such as the Food Quality Protection Act (FQPA) of 1996 and the Presidential/Congressional
Commission on Risk Assessment and Risk Management (1997); and (4) setting the stage for a more open
decision-making process through stakeholder involvement in the risk management process, as outlined in
Improving Risk Communication (NRC, 1989).
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1.1.2 RiSK ASSESSMENT AT EPA

EPA has refined the risk paradigm through deliberations of the Risk Assessment Forum, Science
Policy Council, and other Agency-wide bodies. Such deliberations have led to consensus in guidance,
policies, and memoranda that respond to the requirements set out by various environmental statutes.
Individual offices have also developed regulations, guidance, and other supporting documents to aid in
the implementation of particular environmental statutes.

In 1986, EPA issued final guidelines relating to risk assessment for cancer, mutagenic effects,
developmental effects, exposure assessment, and chemical mixtures. Since 1986, EPA has updated or
issued revised final guidelines for developmental toxicity, exposure assessment, reproductive toxicity,
neurotoxicity, and ecological risk assessment; and is now revising carcinogen risk assessment guidelines.
(See http://www.epa.gov/ncea/raf/rafguid.htm for details on guidelines.)

Other notable documents that guide risk assessment at EPA include:

*  Framework for Ecological Risk Assessment (U.S. EPA, 1992b)

*  Guidelines for Ecological Risk Assessment (U.S. EPA, 1998)

*  Guidance for Risk Characterization (U.S. EPA, 1995a)

»  Policy for Risk Characterization (U.S. EPA, 1995¢)

»  Policy on Evaluating Health Risks to Children (U.S. EPA, 1995d)

*  Policy for Use of Probabilistic Analysis in Risk Assessment (U.S. EPA, 1997g)

*  Use of Probabilistic Techniques (including Monte Carlo Analysis) in Risk Assessment
(U.S. EPA, 1997g)

*  Guidance on Cumulative Risk Assessment. Part 1. Planning and Scoping
(U.S. EPA, 1997e)

*  Risk Characterization Handbook (U.S. EPA, 2000)

1.1.3 RiISK ASSESSMENT IN SUPERFUND

The activities and publications described above have provided a strong foundation for the
development of risk assessment guidance on conducting human health—and ecological risk assessments
in the Superfund program. EPA uses risk assessment (NRC, 1983, 1994) to carry out CERCLA, as
amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA). Under
CERCLA/SARA, EPA’s Superfund program is authorized to protect human health and the environment
from current and potential threats posed by releases of hazardous substances, pollutants, or contaminants.
The blueprint for the Superfund program is the National Oil and Hazardous Substances Pollution
Contingency Plan (NCP) (U.S. EPA, 1990). Among other things, the NCP calls for the identification and
mitigation of environmental impacts at hazardous waste sites, and for the selection of remedial actions to
protect human health and the environment. An important part of the NCP is the implementation of a
Remedial Investigation and Feasibility Study (RI/FS), which is designed to support risk management
decisions within the Superfund program. A risk assessment is an integral part of the RI/FS, and is
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generally conducted at a site to determine the
need for action and to ensure that a selected
remedy will be protective. The NCP also
establishes some benchmarks for protectiveness
and lays out nine criteria (some risk-based)
against which each cleanup option should be
evaluated (see Exhibit 1-2).

Guidance for risk assessment in the
Superfund program has been developed to
facilitate consistent site-specific responses.
Early major guidance documents developed by
EPA included: Risk Assessment Guidance for
Superfund (RAGS): Volume I. Human Health
Evaluation Manual (HHEM) (Part A, Baseline
Risk Assessment) (U.S. EPA, 1989a) and Risk
Assessment Guidance for Superfund. (RAGS):
Volume 11. Environmental Evaluation Manual
(U.S. EPA, 1989b). RAGS Volume I: Part A
provides an approach for conducting
site-specific baseline (i.e., without remediation
or institutional controls) human health risk
assessments. RAGS Volume II, aimed at site
managers, provides a framework for considering
environmental effects at sites. More recently,

EXHIBIT 1-2

NINE CRITERIA FOR EVALUATION OF
CLEANUP ALTERNATIVES (U.S. EPA, 1990)

Threshold Criteria

. Overall protection of human health and the

environment

. Compliance with ARARs

Balancing Criteria

. Long-term effectiveness and permanence
. Reduction in toxicity, mobility, or volume

through treatment

. Short-term effectiveness
. Implementability
. Cost

Modifying Criteria
. State acceptance
. Community acceptance

EPA developed guidance for conducting ecological risk assessments within the Superfund program. This
guidance, Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting
Ecological Risk Assessments (U.S. EPA, 1997a), discusses scientific methods and stakeholder input.

Over the years, the Superfund program has expanded RAGS to include the following documents

relating to human health:

*  RAGS Volume I, Part B: Development of Risk-based Preliminary Remediation Goals (Risk
Equations and Parameters) (U.S. EPA, 1991b)

*  RAGS Volume I, Part C: Risk Evaluation of Remedial Alternatives (U.S. EPA, 1991¢)

*  RAGS Volume I, Part D: Standardized Planning, Reporting, and Review of Superfund Risk

Assessments (U.S. EPA, 2001a)

*  RAGS Volume I, Part E: Supplemental Guidance for Dermal Risk Assessment (U.S. EPA,

2001b)

Additional ecological guidance documents include:

*  Role of the Ecological Risk Assessment in the Baseline Risk Assessment. OSWER Directive

No. 9285.7-17 (U.S. EPA, 1994a)

» Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles
for Superfund Sites. OSWER Directive 9285.7-28 P (U.S. EPA, 1999)

»  The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern in
Baseline Risk Assessments. 12" Intermittent Bulletin, ECO Update Series. (U.S. EPA, 2001d)
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This document (RAGS Volume 3: Part A) provides guidance for probabilistic approaches for both
human health and ecological risk assessment.

The Superfund program has also issued supplementary documents, including:

*  Human Health Evaluation Manual, Supplemental Guidance: “Standard Default Exposure
Factors” (U.S. EPA, 1991a)

*  Supplemental Guidance to RAGS: Calculating the Concentration Term (U.S. EPA, 1992d)

*  Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions
(U.S. EPA, 1991d)

*  Use of IRIS (Integrated Risk Information System) Values in Superfund Risk Assessment
(U.S. EPA, 1993)

e Final Soil Screening Guidance, May 17, 1996. Soil Screening User’s Guide (U.S. EPA,
1996)

o Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites
(U.S. EPA, 2001c).

EPA will continue to develop Superfund guidance and tools to improve the practice of risk
assessment. Superfund guidance documents are available from EPA’s Superfund publications web site
(http://www.epa.gov/superfund/pubs.htm).

The role of risk assessment in Superfund, described above, can be summarized by a number of
principles that are followed and developed in RAGS Volume 3: Part A, including:

e The Superfund risk assessment process should rely on early problem formulation, planning,
and scoping for improved remedial investigations and feasibility studies, risk assessments,
and risk management decisions.

* The use of a tiered process in Superfund risk assessment and management is beneficial in
that it promotes an efficient allocation of resources and improved decision-making.

* Early and continuing involvement of stakeholders throughout the Superfund risk assessment
process provides an opportunity to build stakeholder trust and meet stakeholder needs, which
can result in improved risk assessments and faster, more-informed risk management
decisions.

1.1.4 PROBABILISTIC RiSK ASSESSMENT AND ITS ROLE IN SUPERFUND

RAGS Volume I (U.S. EPA, 1989a) and supporting guidance describe a point estimate approach
to risk assessments in the Superfund program. Point estimate risk assessments use single values (point
estimates) to represent variables in a risk equation. The output of the risk equation in a point estimate
risk assessment is, therefore, a point estimate of risk, which can be a central tendency exposure (CTE)
estimate of risk (e.g., the average expected risk) or reasonable maximum exposure (RME) estimate of
risk (e.g., the risk expected if the RME was to occur), depending on the input values used in the risk
equation. RAGS Volume 3: Part A describes a probabilistic approach to risk assessment. Probabilistic
risk assessment uses probability distributions for one or more variables in a risk equation in order to
quantitatively characterize variability and/or uncertainty. The output of a PRA is a probability
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distribution of risks that reflects the combination of the input probability distributions. If the input
distributions represent variability, then the output risk distribution can provide information on variability
in risk in the population of concern. If the input distributions reflect uncertainty, then the output risk
distribution can provide information about uncertainty in the risk estimate. Information from a PRA can
be used to make statements about the likelihood of exceeding a risk level of concern, given the estimated
variability in elements of the risk equation. Since the results of point estimate methods generally do not
lend themselves to this level of risk characterization (e.g., quantitative uncertainty assessment), PRA can
provide unique and important supplemental information that can be used in making Superfund risk
management decisions at Superfund sites.

Monte Carlo Analysis (MCA) is perhaps the most widely used probabilistic method in PRA.
MCA is a specific probabilistic method that uses computer simulation to combine multiple probability
distributions in a risk equation (see Section 1.2.2 for further discussion of Monte Carlo simulation).
Monte Carlo methods have been in used in modeling since 1946 when Stanislaw Ulam used MCA to
conduct uncertainty analysis at Los Alamos during the conceptual stage of the hydrogen bomb project.
The history of the use of MCA (from the 1940s to the present) can be found in Rugen and Callahan,
1996.

The application of probabilistic analysis to human health and ecological risk assessment is a
relatively recent development that was facilitated by development of statistical sampling techniques to
obtain a probabilistic approximation to the solution of a mathematical equation and/or model, and
increased speed and capacity of modern computers which can support the intensive computational
requirements of MCA. Desktop computers and commercial software are currently available which
enable risk assessors to make, in minutes, PRA calculations that only a few years ago would have
required days.

The potential value of PRA to support risk-based decisions has become increasingly apparent
over the last several years. This has prompted the need for appropriate policy and guidance documents
that define the role of PRA in the Superfund program and that promote and facilitate the highest quality
and consistent application of PRA in the Program where appropriate. EPA previously issued guidance
that addresses the use of quantitative uncertainty analysis in risk assessment. RAGS Volume I (U.S. EPA,
1989a) and the Final Guidelines for Exposure Assessment Guidelines (U.S. EPA, 1992a) emphasize the
importance of assessing variability and uncertainty in risk estimates conducted in the Superfund program.
Guidance is also available for characterizing the 95% upper confidence limit (UCL) for the mean
exposure concentration (U.S. EPA, 1992d, 1997f). At the regional level, EPA Regions 3 and 8 issued
guidance on the appropriate use of probabilistic methods in risk assessment (U.S. EPA, 1994b, 1995¢).
The importance of adequately characterizing variability and uncertainty is addressed in the 1995
memorandum on Risk Characterization Policy and Guidance (U.S. EPA, 1995b). In the spring of 1997,
EPA released the memorandum, Use of Probabilistic Techniques (including Monte Carlo Analysis) in
Risk Assessment (U.S. EPA, 1997g). According to the Policy Statement of the memorandum,
probabilistic analysis techniques, “given adequate supporting data and credible assumptions, can be
viable statistical tools for analyzing variability and uncertainty in risk assessments.” As such, a PRA,
“will be evaluated and utilized in a manner that is consistent with other risk assessments submitted to the
Agency.” Along with this Policy Statement, the Agency released a set of guiding principles for use and
review of probabilistic analyses (U.S. EPA, 1997g). Hence, both RAGS and Agency-wide guidance
emphasize the importance of review of the scientific and technical merit of a probabilistic analysis to
determine whether or not the assessment is of sufficient quality to support a remedial decision.
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Currently, EPA’s Office of Emergency and Remedial Response (OERR) is implementing PRA as
part of its Superfund reform activities. This guidance, RAGS Volume 3: Part A, provides risk assessors
with comprehensive guidance on when and how it may be appropriate to conduct PRAs using Monte
Carlo analysis within the Superfund program. It describes basic concepts in PRA, an approach for
conducting MCA, and EPA’s policy for implementing PRA in the Superfund program. The Agency also
intends to supplement this guidance with additional examples and case studies in PRA (see Section 1.6).

1.2 BAsS1iCc CONCEPTS OF PROBABILISTIC RISK ASSESSMENT

This section describes what a PRA is and compares and contrasts it to the more familiar point
estimate methods for human health risk assessment (U.S. EPA, 1989a) and ecological risk assessment
(U.S. EPA, 1997a). A risk assessment performed using probabilistic methods is very similar in concept
and approach to the point estimate method, with the main difference being the methods used to
incorporate variability and uncertainty into the risk estimate. A variety of modeling techniques can be
used to characterize variability and uncertainty in risk. This guidance focuses on MCA, perhaps the most
common probabilistic method that risk assessors will encounter. Basic concepts on how to use MCA to
propagate variability and uncertainty in exposure through a risk model are presented. Many of the
concepts presented in this guidance are applicable to other probabilistic approaches to risk assessment.

At some sites, probabilistic analysis can provide a more complete and transparent
characterization of the risks and uncertainties in risk estimates than would otherwise be possible with a
point estimate approach. However, a PRA is not necessary or desirable for every site. The tiered
approach presented in Chapter 2 highlights important scientific and management decisions for
determining if PRA is appropriate at a specific site. The decision to perform PRA is appropriate only
after the risk assessor and the remedial project manager (RPM) at the site determine whether a PRA will
enhance decision making at the site. If a PRA is conducted, the assumptions and inputs to the
probabilistic model should be sufficiently documented so that the results can be independently
reproduced.

An essential concept in PRA that will be important throughout this section and the rest of the
guidance is the distinction between “variability” and “uncertainty”. Variability refers to true
heterogeneity or diversity. For example, among a population that drinks water from the same source and
with the same contaminant concentration, the risks from consuming the water may vary. This may be
due to differences in exposure (i.e., different people drinking different amounts of water, having different
body weights, exposure frequencies, and exposure durations) as well as differences in response (e.g.,
genetic differences in resistance to a chemical dose). Differences among individuals in a population are
referred to as inter-individual variability, while differences for one individual over time are referred to as
intra-individual variability.

Uncertainty occurs because of a lack of knowledge. For example, we can be very certain that
different people drink different amounts of water, but we may be uncertain about how much variability
there is in water intakes among the population. Uncertainty can often be reduced by collecting more and
better data, while variability is an inherent property of the population being evaluated. Variability can be
better characterized with more data, but it cannot be reduced or eliminated.

Sometimes there can be confusion about whether data are representative of variability or
uncertainty, especially when the distinction depends on how the problem is framed. For example, one of
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the exposure variables that may be considered in a risk assessment of workers exposed via inhalation to
an indoor air contaminant is the fraction of time spent indoors on site. Assume that time-activity
information is available from surveys of a representative population of workers. This data set may be
used to define a probability distribution (e.g., empirical, normal) that characterizes inter-individual
variability in exposure times among workers. Sources of uncertainty would include the choice of the
probability distribution used to characterize variability, as well as the parameter estimates that are based
on a finite data set. Using the same data set, uncertainty in a parameter, such as the arithmetic mean
exposure time, may also be defined by a probability distribution. Efforts to clearly distinguish between
variability and uncertainty are important for both risk assessment and risk communication. Section 1.2.4
and Chapter 3, Section 3.4 present an overview of the different sources of uncertainty. Guidance on
selecting and fitting probability distributions is given in Appendices B and C, and advanced methods for
characterizing both variability and uncertainty are discussed in Appendix D.

1.2.1 WHATIS PRA?

Probabilistic risk assessment is a general term for risk assessments that use probability models to
represent the likelihood of different risk levels in a population (i.e., variability) or to characterize
uncertainty in risk estimates.

A risk assessment performed using probabilistic methods would rely on the same fundamental
exposure and risk equations as do point estimate approaches. U.S. EPA guidance, including RAGS
Volume I: Part A (U.S. EPA, 1989a), the Standard Default Exposure Factors Guidance (U.S. EPA,
1991a), Supplemental Guidance for Developing Soil Screening Levels (U.S. EPA, 2001¢), and Ecological
Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk
Assessments (U.S. EPA, 1997a) present methods for estimating risk using standardized exposure and risk
models. Examples of typical exposure and risk equations that would be used in risk calculations, in this
case, for a drinking water exposure scenario, are provided in Exhibit 1-3:
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EXHIBIT 1-3
CANCER AND NONCANCER RISK MODELS
Exposure Model:
’ oy CXARX EFx ED
Cancer Risk Model: - S AT
, Risk= CDIx CSF
Noncancer Risk Model:
Coy
HO= —
CDI = chronic daily intake of the chemical (mg/kg-day)
C = concentration of the chemical in an exposure medium (e.g., mg/L)
IR = ingestion rate (e.g., L/day for water, mg/day for soil, etc.)
EF = exposure frequency (days/year)
ED = exposure duration (years)
BW = body weight (kg)
HQ = hazard quotient
AT = averaging time (equal to ED x 365 days/year for noncarcinogens and 70 years
x 365 days/year for carcinogens)
CSF = cancer slope factor (linear low-dose cancer potency factor) for the chemical (mg/kg-day)™
RfD = reference dose for the chemical for assessing noncancer health effects (mg/kg-day)

In the point estimate approach, a single numerical value (i.e., point estimate) is chosen for each
variable shown in Exhibit 1-3. For example, point estimates may include a drinking water ingestion rate
of 2 L/day and a body weight of 70 kg for an adult. Based on the choices that are made for each
individual variable, a single estimate of risk is calculated. In the probabilistic approach, inputs to the risk
equation are described as random variables (i.e., variables that can assume different values for different
receptors in the population) that can be defined mathematically by a probability distribution. For
continuous random variables, such as those in Figure 1-1 (body weight), the distribution may be
described by a PDF, whereas for discrete random variables (e.g., number of fish meals per month), the
distribution may be described by a probability mass function (PMF). The key feature of PDFs and PMFs
is that they describe the range of values that a variable may assume, and indicate the relative likelihood
(i.e., probability) of each value occurring within that range for the exposed population. For example, the
distribution of tap water ingestion (mL/day) among the general U.S. population might be characterized
by a lognormal distribution with a log-mean of 6.86 and a log-standard deviation of 0.575 (Table 3-11 of
U.S. EPA 1997b). One might use a PDF to show how approximately half the population drinks more
than 1 L/day of tap water, but only 10% of the population drinks more than 2 L/day. After determining
appropriate PDF types and parameter values for selected variables, the set of PDFs is combined with the
toxicity value in the exposure and risk equations given in Exhibit 1-3 to estimate a distribution of risks.
Guidance on selecting and fitting distributions for variables in risk equations is provided in Appendix B.

In human health risk assessments, probability distributions for risk should reflect variability or
uncertainty in exposure. In ecological risk assessments, risk distributions may reflect variability or
uncertainty in exposure and/or toxicity (see Sections 1.4 and 1.4.1, [tem 3).
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A continuous probability distribution can
be displayed in a graph in the form of either a
PDF or corresponding CDF; however, for clarity,
it is recommended that both representations be
presented in adjacent (rather than overlaid) plots.
Figure 1-1 illustrates a PDF and CDF for a
normal probability distribution for adult body
weight. Both displays represent the same
distribution, but are useful for conveying
different information. Note that it is helpful to
include a text box with summary statistics
relevant to the distribution (e.g., mean, standard
deviation). The types of information that PDFs
and CDFs are most useful for displaying are
presented in Exhibit 14,
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EXHIBIT 1-4
USE A PDF AND CDF To DISPLAY:

PDF
The relative probability of values

The most likely values (e.g., modes)

The shape of the distribution (e.g., skewness,
kurtosis, multimodality)

Small changes in probability density

CDF
Percentiles, including the median

High-end risk range (e.g., 90™ to 99™ percentiles)
Confidence intervals for selected percentiles
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Source: U.S. EPA, 1997¢g
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Figure 1-1. Example of a normal distribution that characterizes variability in adult body weight (males
and females combined). Arithmetic mean=71.7 kg, standard deviation=15.9 kg (Finley and Paustenbach,
1994). Body weight may be considered a continuous random variable. The left panel shows a
bell-shaped curve and represents the PDF, while the right panel shows an S-shaped curve and represents
the CDF. Both displays represent the same distribution (including summary statistics), but are useful for

conveying different information.
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The CDF for risk can be especially informative for illustrating the percentile corresponding to a
particular risk level of concern (e.g., 95" percentile=1E-06). A text box may also be included on the
graph to highlight important summary statistics, such as the parameters of the input distribution, or
selected percentiles of the output distribution for risk. For example, a clear description of the parameters
for the probability distribution should be given, as well as an indication of whether the distribution
represents variability or uncertainty.

1.2.2 WHAT 1S A MONTE CARLO SIMULATION?

Perhaps the most common numerical technique for PRA is Monte Carlo simulation. Monte
Carlo simulation has been widely used to explore problems in many disciplines of science as well as
engineering, finance, and insurance (Rugen and Callahan, 1996). The process for a Monte Carlo
simulation is illustrated in Figure 1-2. In its general form, the risk equation can be expressed as a
function of multiple exposure variables (V,) and a toxicity term: Risk=f(V,, V,, ...V,) x Toxicity.
Solutions for equations with PDFs are typically too complex for even an expert mathematician to
calculate the risk distribution analytically. However, numerical techniques applied with the aid of
computers can provide very close approximations of the solution. This is illustrated here for the
simplified case in which the assessment variables are statistically independent, that is, the value of one
variable has no relationship to the value of any other variable. In this case, the computer selects a value
for each variable (V,) at random from a specified PDF and calculates the corresponding risk. This
process is repeated many times (e.g., 10,000), each time saving the set of input values and corresponding
estimate of risk. For example, the first risk estimate might represent a hypothetical individual who drinks
2 L/day of water and weighs 65 kg, the second estimate might represent someone who drinks 1 L/day and
weighs 72 kg, and so forth. Each calculation is referred to as an iteration, and a set of iterations is called
a simulation.

1= A convenient aid to understanding the Monte Carlo approach for
quantifying variability is to visualize each iteration as representing a single
individual and the collection of all iterations as representing a population.

Each iteration of a Monte Carlo simulation should represent a plausible combination of input values (i.e.,
exposure and toxicity variables), which may require using bounded or truncated probability distributions
(see Appendix B). However, risk estimates are not intended to correspond to any one person. The
“individuals” represented by Monte Carlo iterations are virtual and the risk distributions derived from a
PRA allow for inferences to be made about the likelihood or probability of risks occurring within a
specified range for an exposed human or ecological population. A simulation yields a set of risk
estimates that can be summarized with selected statistics (e.g., arithmetic mean, percentiles) and
displayed graphically using the PDF and CDF for the estimated risk distribution. Often the input
distributions are assumed to be independent, as shown in Figure 1-2. More complex Monte Carlo
simulations can be developed that quantify a dependence between one or more input distributions by
using conditional distributions or correlation coefficients (see Appendix B, Section B.5.5 for a discussion
of correlated input distributions).
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Probability Distribution for Random Variables
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Figure 1-2. Conceptual model of Monte Carlo analysis. Random variables (V,, V,, ...V,) refer to exposure
variables (e.g., body weight, exposure frequency, ingestion rage) that are characterized by probability
distributions. A unique risk estimate is calculated for each set of random values. Repeatedly sampling (V)
results in a frequency distribution of risk, which can be described by a PDF. In human health risk assessments,
the toxicity term should be expressed as a point estimate. In ecological risk assessment (see Sections 1.4

and 1.4.1) the toxicity term may be expressed as a point estimate or as a probability distribution.
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The rapid evolution in computing power has greatly reduced concerns among regulators
regarding the number iterations needed in MCA.

& While this guidance does not prescribe specific criteria or set an arbitrary
“minimum” number of iterations needed for PRA, a general rule of thumb is
that a sufficient number of iterations should be run to obtain numerical
stability in percentiles of the output (e.g., risk distribution) that are
important for decision making.

Numerical stability refers to the stochastic variability, or “wobble” associated with random sampling, and
can be evaluated by running multiple simulations with the same set of input assumptions and calculating
the average percent change in a specified percentile of the output (e.g., Maddalena et al., 2001). For
example, it may be determined that 5,000 iterations are sufficient to achieve numerical stability in the
50" percentile, but insufficient for the 95* percentile risk estimate when a criteria of + 1% is applied for
multiple simulations. As discussed in Section 1.4, one of the eight conditions specified by EPA for the
acceptance of PRA is that the numerical stability of the output be presented and discussed, since it will
vary depending on what percentile of the risk distribution is evaluated. While some commercial software
now have a feature to automatically stop simulations after a specified criterion for numerical stability is
achieved (Burmaster and Udell, 1990), care should be taken to understand how this criterion is
implemented across the entire range of the output distribution.

1.2.3 WHY IS VARIABILITY IMPORTANT IN RiSK ASSESSMENT? HOW IS IT ADDRESSED BY THE
POINT ESTIMATE AND PROBABILISTIC APPROACHES?

As noted previously, variability refers to true heterogeneity or diversity that occurs within a
population or sample. Factors that lead to variability in exposure and risk include variability in
contaminant concentrations in a medium (air, water, soil, etc.), differences in ingestion rates or exposure
frequencies, or in the case of ecological assessments, inter- and intra-species variability in dose-response
relationships. Risk Assessment Guidance for Superfund Volume I (Section 6.1.2 of U.S. EPA, 1989a) and
the NCP Preamble (U.S. EPA, 1990) state that human health risk management decisions at Superfund
sites will generally be based on an individual that has RME. Likewise, RME estimates ofrisk are the
most appropriate basis for decision making using an ecological risk assessment. Use of the RME and
CTE risk descriptors in ecological risk assessment are discussed in Chapter 4. The intent of the RME is
to estimate a conservative exposure case (i.e., well above the average case) that is still within the range of
possible exposures based on both quantitative information and professional judgment (Sections 6.1.2
and 6.4.1 of U.S. EPA, 1989a). In addition, the Agency released guidance in 1992 (U.S. EPA, 1992c¢)
recommending the inclusion of a “central tendency” exposure estimate to an individual, as well as a
high-end exposure estimate, in the risk assessment. Generally, the CTE is considered to be a measure of
the mean or median exposure. The difference between the CTE and the RME gives an initial impression
of the degree of variability in exposure or risk between individuals in an exposed population.

Depending on assessment needs at a site, a range of point estimates of risk can be developed to
represent variability in exposures. To support the evaluation of RME risk estimates using the point
estimate approach described in Section 1.3, the Superfund program developed guidance with
recommended default values for exposure variables as inputs to the risk equations (U.S. EPA, 1992a,
1996, 1997a,2001d). These standardized values are a combination of average (e.g., body weight, skin
surface area) and high-end exposure assumptions (e.g., drinking water intake, exposure duration). A
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CTE risk estimate is based on central estimates (e.g., mean, 50" percentile) for each of the exposure
variables. Available site-specific data on plausible mean and upper range values for exposure variables
should be used to support CTE and RME risk estimates. The point estimate approach to risk assessment
does not determine where the CTE or RME risk estimates lie within the risk distribution. For example,
the RME risk estimated with the point estimate approach could be the 90" percentile, the

99.9" percentile, or some other percentile of the risk distribution. Without knowing what percentile is
represented by the RME risk estimate, the risk manager might be unsure about the likelihood of the RME
risk occurring or being exceeded in the receptor population and about what level of remedial action is
justified or necessary to achieve the protective objectives of CERCLA.

In a PRA, distributions used as inputs to the risk equations can characterize the inter-individual
variability inherent in each of the exposure assumptions. By characterizing variability with one or more
input distributions, the output from the Monte Carlo simulation is a distribution of risks that could occur
in that population (Figure 1-3). The central tendency of the risk distribution (e.g., arithmetic mean,
geometric mean, 50" percentile) may be characterized as the CTE risk estimate. Similarly, the high-end
of the risk distribution (e.g., 90™ to 99.9" percentiles) is representative of exposures to the RME
individual. In addition to providing a better understanding of where the CTE and RME risks occur in the
distribution, a PRA can also provide an estimate of the probability of occurrence associated with a
particular risk level of concern (e.g., cancer risk of 1E-05). A PRA that quantifies variability can be used
to address the question, “What is the likelihood (i.e., probability) that risks to an exposed individual will
exceed 1E-05?” Based on the best available information regarding exposure and toxicity, a risk assessor
might conclude, “The estimated distribution for variability in risk across the target population indicates
that 10% of the individuals exposed under these circumstances have a risk exceeding 1E-05.” This type
of evaluation can be achieved using a technique known as one-dimensional Monte Carlo Analysis
(1-D MCA). Guidelines for interpreting the high-end of the risk distribution in terms of the RME risk
estimate are discussed further in Section 1.4.1 and Chapter 7.
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Figure 1-3. Example of a probability distribution for risk illustrating the 95™ percentile and two
different risk levels of concern (A and B). Assuming the 95" percentile corresponds to the RME,
the need for remedial action depends on how the RME risk compares with the risk level of
concern. For Case A (RME > level of concern), remedial action may be warranted. For Case B
(RME < level of concern), remedial action may be unnecessary.
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The agreement (or lack of agreement) between the results of the point estimate calculations and
the PRA calculations is expected to vary as a function of the form of the exposure or risk model and the
attributes of the input variables. In general, if the terms in the denominator of the exposure or risk
equation have low variability and do not approach zero, then the CTE point estimate is likely to agree
quite well with the arithmetic mean from the PRA simulation, and the RME point estimate is likely to
correspond to the high-end of the risk distribution (see discussion of RME range in Section 1.2.5).
However, if the exposure or risk model has terms in the denominator that are a significant source of
variability, or if the terms approach zero, then the agreement between the point estimate values and the
PRA values may be more substantial. In addition, since the RME point estimate of risk reflects a
combination of central tendency and high-end input values, it is difficult to anticipate what percentile of
a distribution of variability it represents.

1= [fresults of PRA calculations differ substantially from point estimate
calculations, a risk manager may benefit from understanding the reasons for
the differences and the relative strengths of the different approaches.

Since point estimate and PRA approaches may yield different estimates of CTE and RME risks, the two
approaches also may support different risk management decisions. This does not imply that either
approach is invalid. Likewise, a correspondence between the point estimate and PRA results does not
imply a greater accuracy or certainty in the modeling assumptions and inputs. Simply stated, PRA, based
on the same risk equations and data as the point estimate approach, provides a different means of
characterizing variability and uncertainty. Potential sources of variability and uncertainty in risk
estimates should be identified, discussed, and to the extent practicable, quantified. Advantages and
disadvantages of PRA and point estimate risk assessment are discussed in Section 1.2.4 and 1.3.

1.2.4 WHY IS UNCERTAINTY IMPORTANT IN RiSK ASSESSMENT? HOW 1S UNCERTAINTY
ADDRESSED BY THE POINT ESTIMATE AND PROBABILISTIC APPROACHES?

Uncertainty derives from a lack of knowledge. Various taxonomies of uncertainty relevant to
risk assessment have been presented (Finkel, 1990; Morgan and Henrion, 1990; Cullen and Frey, 1999).
U.S. EPA guidance, including the Final Guidelines Exposure Assessment Guidelines (U.S. EPA, 1992a),
Exposure Factors Handbook (U.S. EPA, 1997b,¢,d), and Guiding Principles for Monte Carlo Analysis
(U.S. EPA, 1997g) describe a variety of different types of uncertainty in risk assessment as well as
modeling strategies for quantifying uncertainties. Potential sources of uncertainty in risk assessment can
be divided into one of three broad categories:

(1) Parameter uncertainty - uncertainty in an estimate of an input variable in a model. In PRA,
this may refer specifically to a statistical concept of uncertainty in estimates of population
parameters (e.g., arithmetic mean, standard deviation) from random samples, due to the
quality, quantity, and representativeness of available data as well as the statistical estimation
method.

(2) Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended
use, including the relevance of simplifying assumptions to the endpoint of the risk
assessment, the choice of probability distribution to characterize variability, and
interpolation or extrapolation beyond the scale used to calibrate a model from empirical data.
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(3) Scenario uncertainty - uncertainty regarding missing or incomplete information to fully
define exposure. This may include descriptive errors regarding the magnitude and extent of
chemical exposure or toxicity, temporal and spatial aggregation errors, incomplete analysis
(i.e., missing exposure pathways), and potential mis-specification of the exposed population
or exposure unit.

Sources of uncertainty described by these categories are important because they can influence
risk management decisions in both point estimate and probabilistic risk assessment. As additional
sources of uncertainty are quantified and included in the risk assessment, uncertainty in risk estimates
may appear to increase, suggesting there may be little confidence in a risk management decision. This
situation may appear to be counterintuitive for those managers who expect confidence to increase as
uncertainty is quantified. However, as discussed below and in Chapter 6 (see Section 6.4.2), uncovering
and quantifying these sources of uncertainty may help to provide perspective, and make the decisions
using the tiered process more transparent. In PRA, there are a variety of methods that can be used to
effectively quantify uncertainty as well as communicate confidence in risk estimates (see Chapter 3,
Section 3.4; Chapter 6, Section 6.4, and Section 6.5).

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified
in site-specific risk assessments at hazardous waste sites. Parameter uncertainty can occur in each step of
the risk assessment process from data collection and evaluation, to the assessment of exposure and
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection
process, imprecision in the analytical measurements, inferences made from a limited database when that
database may or may not be representative of the variable under study, and extrapolation or the use of
surrogate measures to represent the parameter of interest.

In the point estimate approach, parameter uncertainty is addressed in a qualitative manner for
most variables. For example, the uncertainty section of a point estimate risk assessment document might
note that a soil sampling plan yielded a small sample size that may not be representative of overall
contaminant concentrations and, as a result, the risk estimate may over- or under-estimate actual risk.
Uncertainty in the concentration term is addressed quantitatively to a limited extent in a point estimate
approach by using the 95% UCL for the arithmetic mean concentration in both CTE and RME risk
estimates; this accounts for uncertainty associated with environmental sampling and site characterization
(U.S. EPA, 1992d, 1997f). The 95% UCL is combined in the same risk calculation with various central
tendency and high-end point estimates for other exposure factors.

Some examples of the models that EPA uses in the risk assessment process are the equations
used to calculate exposure and risk, the linearized multistage model used to estimate cancer
dose-response relationships, and media-specific models to estimate contaminant concentrations. All
models are simplified, idealized representations of complicated physical or biological processes. Models
can be very useful from a regulatory standpoint, as it is generally not possible to adequately monitor long
term exposure for populations at contaminated sites. However, models that are too simplified may not
adequately represent all aspects of the phenomena they were intended to approximate or may not capture
important relationships among input variables. Other sources of model uncertainty can occur when
important variables are excluded, interactions between inputs are ignored, or surrogate variables that are
different from the variable under study are used.
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In most probabilistic assessments, the first step of analysis is usually an analysis of variability in
exposure or risk. However, PRA methods may also be used to characterize uncertainty around the best
estimate of the exposure or risk distribution. This is done using "2-dimensional" MCA (2-D MCA) (see
Appendix D). One convention that has been used to distinguish between probability distribution
functions for variability
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(Figure 14). For
example, a conclusion
based on this type of
output might be, “While
the best estimate for the
variability distribution for
risk across the target population indicates that 10% of the individuals exposed under these circumstances
have a risk exceeding 1E-06, the uncertainty is such that we can only be reasonably certain (e.g.,

95% sure) that no more than 20% of the exposed population has a risk that exceeds 1E-06.”
Additionally, the output from a 2-D MCA can provide a quantitative measure of the confidence in the
risk estimate for a particular fraction of the population; which is sometimes referred to as a horizontal
confidence interval. This type of output might support the following type of conclusion, “While the best
estimate for the variability distribution for risk across the target population indicates that 10% of the
individuals exposed under these circumstances have a risk exceeding 1E-06, the uncertainty is such that
we can only be reasonably certain (e.g., 95% sure) that the risk for this group of individuals does not
exceed 2E-06.” The term “confidence interval” is used loosely in this context to convey information
about uncertainty; however, it is not the same as a statistical confidence interval that one might obtain by
estimating a population parameter from a sample. The vertical and horizontal bars shown in Figure 1-4
represent a range of possible estimates for the percentile given one or more sources of uncertainty that
were included in the simulation. If the target audience for this graphic has a greater understanding of
statistics, it may be less confusing if alternative phrases are used to describe the results, such as “credible
interval” or “probability band”.

Figure 1-4. Illustration of “Vertical” and “Horizontal” Confidence Intervals (or
limits) on a risk estimate. This type of output can be produced from a 2-D MCA in
which probability distributions of uncertainty are introduced into the risk equation.
See Chapter 3 and Appendix D for further discussion of 2-D M CA in quantitative
uncertainty analysis.

In general, one should avoid developing input distributions to a PRA model that yield a single
risk distribution that intermingles, or represents both variability and uncertainty. By separately
characterizing variability and uncertainty, the output from a PRA will be easier to understand and
communicate. A number of tools can aid in evaluating the uncertainty in estimated distributions for
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variability. Both simple and very complex approaches have been applied to this problem. Two basic
methods for quantifying variability and parameter uncertainty simultaneously are described in
Exhibit 1-5. PRAs that use these approaches can provide quantitative estimates of uncertainty in
percentiles of the risk distribution based on confidence intervals or credible intervals for one or more
parameter estimates. Techniques for characterizing both variability and uncertainty in PRA are discussed
in more detail in Chapters 3, 4, 5, and 7, and Appendices A, C, and D.

A common apprehension
concerning the utility of PRA is that it may
require more information and data than are
available to generate credible PDFs. Risk
assessors may feel that they can’t specify a
PDF because they don’t have enough
information to choose a distribution type,
estimate parameters, or evaluate the
representativeness to the site population of
concern. However, if sufficient
information exists to support a meaningful
point estimate evaluation (i.e., if some sort
of central tendency and upper bound
values are available for each input
variable), then it is usually possible to
perform a screening level, or preliminary
1-D MCA that may provide additional
useful information regarding variability.
Likewise, an initial two-dimensional
analysis may be performed that does not
require collection of any new data, but
simply characterizes uncertainty in the
existing data. The results of such a 2-D
MCA can help to identify the main sources
of uncertainty in the risk results, and can
support decisions to collect more data
and/or proceed with additional tiers of
analysis in order to improve the
assessment. As with a preliminary 1-D
MCA, the decision to conduct a more
advanced probabilistic analysis does not
always result in added data requirements.

ExHIBIT 1-5
QUANTIFYING VARIABILITY AND UNCERTAINTY
1. Single source of uncertainty

Run multiple one-dimensional Monte Carlo
simulations (1-D MCA) in which each simulation
uses a different point estimate for a parameter
selected from an uncertainty distribution, combined
with PDFv’s for one or more variables. For example,
separate simulations can be run in which the mean of
the exposure concentration variability distribution is
represented by either the 95% lower or upper
confidence limit on the mean. A comparison of the
output of these simulations would provide a partial
characterization of the quantitative impact of
uncertainty in the mean exposure concentration on
the risk estimate (provided that certain conditions
hold; i.e., risk increases with increasing exposure
concentration) (see Chapter 3, Section 3.3.1).

2. Multiple sources of uncertainty

Run a single two-dimensional Monte Carlo
simulation (2-D MCA), in which separate probability
distributions are specified for variability and
parameter uncertainty and values from these
distributions are randomly selected and used in each
iteration of the Monte Carlo simulation (see
Appendix D).

Use of probabilistic methods (e.g., MCA) to propagate variability and uncertainty through risk
models offers five key advantages over point estimate approaches in addressing uncertainty in risk

estimates:

(1) Probabilistic methods may often provide a more complete and informative characterization
of variability in exposure or risk than is usually achievable using point estimate techniques.

(2) Probabilistic methods can provide a more quantitative expression of the confidence in risk
estimates than the point estimate approach.
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(3) Sensitivity analysis methods using PRA may help risk assessors to better identify influential
exposure factors.

(4) Probabilistic methods can account for dependencies between input variables (e.g., body
weight and skin surface area).

(5) Probabilistic methods provide quantitative estimates of the expected value of additional
information that might be obtained from data collection efforts (Morgan and Henrion, 1990).
The importance of quantifying uncertainty in an expected value of information (EVOI)
framework is discussed in Appendix D.

Since both point estimate and probabilistic approaches in risk assessment are applied to the same
conceptual models (i.e., the same exposure and risk models), uncertainties in the conceptual model are
generally addressed in the same manner. If other models are available to explain or characterize a given
phenomenon, the risk estimates associated with each of those conceptual models could be compared to
determine the sensitivity of the risk to the uncertainty in the choice of a model (see Chapter 2 and
Appendix A). For example, when deciding on a contaminant concentration term for tetrachloroethylene
in groundwater for a residential exposure assessment 10 years in the future, it would be appropriate to
compare and contrast several fate and transport models and their results before deciding on a
concentration term.

1.2.5 REASONABLE MAXIMUM EXPOSURE AT THE HIGH-END

Risk management decisions at Superfund sites should be based on an estimate of the risk to a
reasonably maximum exposed receptor, considering both current and future land-use conditions. The
RME is defined as the highest exposure that is reasonably expected to occur at a site. In general, risks
corresponding to the 90" to 99.9" percentiles of the risk distribution estimated from a PRA are
considered plausible high-end risks, and the RME risk should be selected within this range (see
Section 1.2.4, Section 1.4.1, and Chapter 7 for further discussion). In comparison with point estimate
risk assessments, PRA can provide the entire range of estimated risks as well as the likelihood of values
within the range (i.e., the frequency distribution)

As noted in Chapter 7, estimates of risk become more uncertain at very high percentiles (e.g., the
99.9™), so results of PRA calculations at these extreme values should be used with caution. Risk
frequency distributions toward the 99.9" percentile may be numerically unstable due to the uncertainties
embedded in the input exposure assumptions. This guidance recommends that a risk manager select the
RME in consultation with a risk assessor. One item for discussion should be the numerical stability of
the high-end RME risk value (i.e., a stable value on the frequency distribution within the high-end range
that could be reproduced in successive Monte Carlo simulations.)

1.3 ADVANTAGES AND DISADVANTAGES OF POINT ESTIMATE AND PROBABILISTIC
APPROACHES

As discussed in Chapter 2, a PRA should not be conducted until adequate point estimate
calculations have been completed. Once this has been done, the potential benefits of proceeding to a
PRA evaluation should be based on an understanding of the potential advantages and limitations in each
approach. Potential advantages and disadvantages of point estimate calculations are summarized in
Exhibit 1-6 and potential advantages and disadvantages of PRA are listed in Exhibit 1-7.
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In general, compared to a point estimate risk assessment, a PRA based on the same state of
knowledge may offer a more complete characterization of variability in risk, can provide a quantitative
evaluation of uncertainty, and may provide a number of advantages in assessing if and how to proceed to
higher levels of analysis. However, there are also some real and perceived disadvantages regarding
additional effort on the part of both the risk assessor and the risk manager, and the potential to cause
confusion if the effort is not clearly presented.

In general, the key question to consider in deciding whether a PRA should be performed is
whether or not the PRA analysis is likely to provide information that will help in the risk management
decision making. For some sites, the additional information provided by a PRA will not affect the
decision that would have been made with a point estimate approach alone, and a PRA will not be useful.
However, when the decision whether or not to take action is not completely clear, PRA may be a
valuable tool. The tiered process for PRA (Chapter 2) introduces the concept of scientific management
decision points (SMDPs) to guide the complexity of analysis that may be needed for decision making,.
An SMDP marks a point in the process in which the potential that another analysis may influence the risk
management decision is evaluated based on the problem formulation, the information available to define
input variables, the results of previous analyses, and the feasibility of a subsequent analysis.

1= A point estimate approach is conducted for every risk assessment; a
probabilistic analysis may not always be needed.

EXHIBIT 1-6
ADVANTAGES AND DISADVANTAGES OF POINT ESTIMATE APPROACH

Advantages

+  Calculations are simple and do not require any advanced software.

* EPA has established default inputs and methods to help standardize point estimate
calculations between sites.

*  Useful as a screening method—may allow risk management decisions with no
additional work.

* Central tendency and RME estimates of risk provide a semi-quantitative measure of
variability.

*  Method is easily described and communicated.

. Requires less time to complete; not as resource intensive.

Disadvantages

*  Computational simplifications may result in deviations from target values.

* Results are often viewed as “the answer”; importance of uncertainty is sometimes
lost.

* Information from sensitivity analysis is generally limited to dominant exposure
pathways and chemicals of concern; may not highlight the key exposure variables and
uncertain parameters.

* Does not provide a measure of the probability that risk exceeds a regulatory level of
concern, or the level of confidence in a risk estimate.

*  Provides fewer incentives for collecting better or more complete information.
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EXHIBIT 1-7
ADVANTAGES AND DISADVANTAGES OF PROBABILISTIC RISK ASSESSMENT

Advantages

+ Can make more complete use of available data when defining inputs to the risk equation.

* Can provide a more comprehensive characterization of variability in risk estimates.

* Can provide a more comprehensive characterization of uncertainty in inputs, which may
support statements regarding confidence in risk estimates. Communication of uncertainty in the
risk assessment can help to build trust among stakeholders.

»  Sensitivity analysis can identify the exposure variables, probability models, and model
parameters that influence the estimates of risk.

»  Puts the risk assessment in a Value-of-Information framework (see Appendix D). Can identify
data gaps for further evaluation/data collection and can use wider variety of site-specific
information.

* Allows available site-specific information to inform the choice of high-end percentile from the
risk distribution that corresponds with RME risk.

Disadvantages

e Concepts and approaches may be unfamiliar; there is often apprehension regarding added costs
and potential for inadvertent error and/or intentional misrepresentation.

e Places more burden on risk assessors to ensure the PRA is done correctly and on managers to
understand and make decisions within a range of alternatives.

*  May require more time and resources to select and fit probability distributions, and may require
greater effort to communicate methodology and results.

e May convey false sense of accuracy when data are sparse.

e Complexities of the PRA approaches may obscure important assumptions or errors in basic
exposure or risk models.

e If communication of the more complex PRA is unsuccessful, then it may generate mistrust of

the assessment and risk management decisions.
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1.4 CONDUCTING AN ACCEPTABLE PRA

In 1997, EPA issued a memorandum which contained its policy statement on PRA (U.S. EPA,
1997g). The 1997 EPA Policy Statement is as follows:

It is the policy of the U.S. Environmental Protection Agency that such probabilistic analysis
techniques as Monte Carlo analysis, given adequate supporting data and credible
assumptions, can be viable statistical tools for analyzing variability and uncertainty in risk
assessments. As such, and provided that the conditions described below are met, risk
assessments using Monte Carlo analysis or other probabilistic techniques will be evaluated
and utilized in a manner that is consistent with other risk assessments submitted to the
Agency for review or consideration. It is not the intent of this policy to recommend that
probabilistic analysis be conducted for all risk assessments supporting risk management
decisions. Such analysis should be a part of a tiered approach to risk assessment that
progresses from simpler (e.g., deterministic) to more complex (e.g., probabilistic) analyses
as the risk management situation requires. Use of Monte Carlo or other such techniques in
risk assessments shall not be cause, per se, for rejection of the risk assessment by the
Agency. For human health risk assessments, the application of Monte Carlo and other
probabilistic techniques has been limited to exposure assessments in the majority of cases.
The current policy, Conditions for Acceptance and associated guiding principles are not
intended to apply to dose response evaluations for human health risk assessment until this
application of probabilistic analysis has been studied further. In the case of ecological risk
assessment, however, this policy applies to all aspects including stressor and dose-response
assessment.

In support of this policy statement, EPA has outlined eight conditions for acceptance (in italics
below), and good scientific practice of PRA. A PRA that is submitted to the Agency for review and
evaluation should generally comply with each condition in order to ensure that adequate supporting data
and credible assumptions are used in the assessment. These conditions are as follows:

(1) The purpose and scope of the assessment should be clearly articulated in a "problem
formulation" section that includes a full discussion of any highly exposed or highly
susceptible subpopulations evaluated (e.g., children, the elderly). The questions the
assessment attempts to answer are to be discussed and the assessment endpoints are to be
well defined.

(2) The methods used for the analysis (including all models used, all data upon which the
assessment is based, and all assumptions that have a significant impact upon the results) are
to be documented and easily located in the report. This documentation is to include a
discussion of the degree to which the data used are representative of the population under
study. Also, this documentation is to include the names of the models and software used to
generate the analysis. Sufficient information is to be provided to allow the results of the
analysis to be independently reproduced.

Possible sources of bias inherent in the input distributions should be discussed along with the
expected impacts on the resulting risk estimates. For example, if a site-specific study of fish
consumption indicated consumption rates are five to ten times higher than other studies from similar
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populations, this possible bias or inaccuracy should be discussed in the document. Computer programs
should generally be described in sufficient detail to allow the reviewer to understand all aspects of the
analysis. Computer code/spreadsheets should provide adequate documentation and annotation.

(3) The results of sensitivity analyses are to be presented and discussed in the report.
Probabilistic techniques should be applied to the compounds, pathways, and factors of
importance to the assessment, as determined by sensitivity analyses or other basic
requirements of the assessment.

Sensitivity analysis is a valuable tool in any tier of a PRA.

(4) The presence or absence of moderate to strong correlations or dependencies between the
input variables is to be discussed and accounted for in the analysis, along with the effects
these have on the output distribution.

(5) Information for each input and output distribution is to be provided in the report.This
includes tabular and graphical representations of the distributions (e.g., probability density
function and cumulative distribution function plots) that indicate the location of any point
estimates of interest (e.g., mean, median, 95" percentile). The selection of distributions is to
be explained and justified. For both the input and output distributions, variability and
uncertainty are to be differentiated where possible.

(6) The numerical stability of the central tendency and the higher end (i.e., tail) of the output
distributions are to be presented and discussed.

As discussed in Section 1.2.5, numerical stability refers to the observed numerical changes in
parameters of the output distribution (e.g., median, 95" percentile) from a Monte Carlo simulation as the
number of iterations increases. Because most risk equations are linear and multiplicative, distributions of
risk will generally be right-skewed, and approximate a lognormal distribution. Values in the tails of the
distribution typically are less stable than the central tendency, and the rate of convergence for the tails
will depend on the form of the risk model, the skewness of the probability distributions selected for input
variables and the numerical methods used to simulate probability distributions. Provided that appropriate
numerical methods are employed, numerical stability is generally not a concern for most 1-D MCA
models, which can be run with a sufficient number iterations in minutes with modern high speed

computers; however, it can be an important consideration for more complex simulations, such as with
2-D MCA models.

(7) Calculations of exposures and risks using deterministic (e.g., point estimate) methods are to
be reported if possible. Providing these values will allow comparisons between the
probabilistic analysis and past or screening level risk assessments. Further, deterministic
estimates may be used to answer scenario specific questions and to facilitate risk
communication. When comparisons are made, it is important to explain the similarities and
differences in the underlying data, assumptions, and models.

If results of PRA calculations differ substantially from point estimate calculations, a risk
manager may benefit from understanding the reasons for the differences and the relative strengths of the
different approaches. Sometimes, a closer look at uncertainties in the underlying data, assumptions, and
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models will lead a risk assessor to revisit parts of the assessment in order to provide a more consistent
basis for comparison.

(8) Since fixed exposure assumptions (e.g., exposure duration, body weight) are sometimes
embedded in the toxicity metrics (e.g., Reference Doses, Reference Concentrations, Cancer
risk factors), the exposure estimates from the probabilistic output distribution are to be
aligned with the toxicity metric.

1.4.1 KEY POLICIES FOR APPLYING PRA AT SUPERFUND SITES

EPA’s recommended process for conducting an acceptable PRA generally follows the policy and
guiding principles presented above. In addition, this section highlights four key policies for conducting
acceptable PRAs at hazardous waste sites.

(1) Follow the Tiered Approach to PRA

In accordance with the 1997 EPA Policy Statement (U.S. EPA, 1997g), this guidance
recommends using a tiered approach when considering PRA to help with risk management decisions. A
tiered approach begins with a relatively simple analysis and progresses stepwise to more complex
analyses. The level of complexity should match the site-specific risk assessment objectives and the risk
management goals. The tiered approach, with helpful suggestions on risk communication, is presented in
Chapter 2. A brief introduction is given below.

The premise for recommending a tiered approach is that there is a balance between the benefits
of conducting a more complex analysis, and the cost in terms of additional time, resources, and
challenges for risk communication. PRA may require additional resources compared with the point
estimate approach, and may not be used routinely for screening level assessment. At more complex
hazardous waste sites, PRA may not be warranted if the investment of time and resources is unlikely to
provide information on variability and uncertainty in risk that will affect the risk management decision.

This guidance recommends that a point estimate risk assessment be conducted in the first tier
after completing the remedial investigation (RI) planning, site scoping, problem formulation, data
collection, and the development of a site conceptual model. In general, when site decision making would
benefit from additional analysis beyond the point estimate risk assessment, and when the risk manager
needs more information to complete the RI/FS process, the risk manager would proceed to higher tiers.
Sensitivity analysis should be conducted in each tier to guide decisions regarding data collection and the
complexity of the analysis needed to characterize variability and/or uncertainty in risk. Sensitivity
analysis can also play an important role in risk communication by supporting decisions to continue
characterizing less influential variables with point estimates in higher tiers.

2) Select the RME Risk from the RME Risk Range (90" to 99.9" percentile)

The RME is defined as the highest exposure that is reasonably expected to occur at a site. Final
Guidelines for Exposure Assessment (EPA, 1992a) states that the “high-end” of exposure for a population
occurs between the 90™ and 99.9™ percentiles, with the 99.9™ percentile considered a bounding estimate.
Using a point estimate approach, the calculation of the RME risk would be based on high-end input
values in combination with average input values. For example, for estimation of risks from the ingestion
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of groundwater, default exposure is based on a high-end water intake rate (2 L/day), a high-end exposure
frequency and duration (350 days/year for 30 years), and an average body weight (70 kg).

With the probabilistic approach, the calculation of the RME risk would be based on a range of
input values, or frequency distributions, including low, average, and high-end values for each of the input
exposure factors. For example, for estimation of risks from ingestion of groundwater, exposure would be
based on the combination of lognormal distributions for water intake rate, body weight, and exposure
duration (each using a specified mean and standard deviation) and a triangular distribution for exposure
frequency (using a specified minimum, most likely value, and maximum). As a result, the RME risk
would become a probability distribution ranging from low- to high-end values based on varying a
combination of input values. In PRA, a recommended starting point for risk management decisions
regarding the RME is the 95" percentile of the risk distribution (see Chapter 7).

3) Use PRA for Dose-Response in Ecological Assessment, not in Human Health Assessment

Approaches to characterizing variability and uncertainty in toxicological information should
reflect both the latest developments in the science of hazard and dose-response evaluation and consistent
application of EPA science policy. This statement is consistent with the /1997 EPA Policy Statement
presented in Section 1.4 above (U.S. EPA, 1997g). Probabilistic approaches to ecological dose-response
assessment may be explored, as discussed and demonstrated in Chapter 4. This guidance does not
develop or evaluate probabilistic approaches for dose-response in human health assessment and, further,
discourages undertaking such activities on a site-by-site basis. Such activities require contaminant-
specific national consensus development and national policy development. Parties wishing to undertake
such activities should contact the OERR to explore ways in which they might contribute to a national
process for the contaminant of interest to them.

“) Prepare a Workplan for EPA Review and Approval

A workplan should be developed and submitted for review before commencement of a PRA.
The workplan should document the combined decisions of the RPM and risk assessor involved in the risk
assessment, and positions of the stakeholders. The workplan should address conditions and policies
presented in this section of RAGS Volume 3: Part A, the software to be used, the exposure routes and
models, and the input probability distributions and their basis, including appropriate literature references.
The workplan is discussed in more detail in Chapter 2.

A checklist of some of the key considerations to assist in the review of a PRA is provided in
Appendix F.

1.5 ORGANIZATION OF THE GUIDANCE
Subsequent chapters of RAGS Volume 3: Part A focus on the following topics:
Chapter 2 - The Tiered Approach to PRA
Chapter 2 includes information regarding organizational issues that may need to be considered by

the RPM in developing a PRA. Examples, include: workplans, involvement of the Community
Involvement Coordinator (CIC), additional meetings with communities, and review of PRA documents.
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Chapter 2 also presents the tiered approach in full detail. The approach begins with RI planning,
scoping, problem formulation, and data collection. Tier 1 entails a point estimate risk assessment and
sensitivity analysis. Tier 2 proceeds with additional data collection, a MCA to characterize variability
and/or uncertainty, and a more in-depth sensitivity analysis. More advanced techniques are used in
Tier 3 to simultaneously characterize variability and uncertainty. The endpoint of the tiered approach is
to provide information that helps risk managers complete the RI/FS process.

Chapter 3 - Probabilistic Human Health Risk Assessment

Chapter 3 provides a discussion of how PRA approaches may be utilized in human health risk
assessment. Probabilistic approaches focus on the exposure assessment, and an example is included to
illustrate the application of the tiered approach to a human health risk assessment.

Chapter 4 - Probabilistic Ecological Risk Assessment

Chapter 4 provides a discussion of how PRA approaches may be utilized in ecological risk
assessment. This includes a discussion of basic tactics, such as how to decide if, and when, a PRA is
needed, along with technical discussions and examples of how to model variability and/or uncertainty in
exposure, toxicity, and risk (characterized both as hazard quotients and responses) for different types of
ecological receptors, both within and between species. The chapter also provides a discussion of how the
results of an ecological PRA can be used in risk management decision making, and provides guidelines
for planning and performing an ecological PRA.

Chapter 5 - PRA and Preliminary Remediation Goals (PRGs)

This chapter provides a discussion about issues associated with deriving PRGs from both point
estimate risk assessment and PRA. Issues and limitations associated with back calculation are
highlighted, along with an explanation and recommendation regarding the iterative forward calculations.

Chapter 6 - Communicating Risks and Uncertainties in PRA

Chapter 6 provides a basic overview of the current Superfund guidance on communicating with
the public. With this as a basis, the chapter provides specific information regarding continuous
involvement of stakeholders in the PRA process, various tools that may be useful in communicating the
principles of PRA, organizational issues regarding planning of communication strategies, and examples
of procedures that may be helpful at individual sites. This chapter also provides references to various
documents on current approaches for communicating risk to the public.

Chapter 7 - Role of PRA in Decision Making

This chapter provides guidance on how to interpret the results of a PRA to determine if an
unacceptable risk is present, and criteria to consider when moving from a risk-based PRG to a remedial
goal.
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Appendix A - Sensitivity Analysis

Important information from PRA includes the results of sensitivity analysis. This appendix
outlines the methodology and interpretation of statistical methods used to conduct sensitivity analysis
with point estimate and probabilistic models.

Appendix B - Selecting and Fitting Distributions

One of the more challenging aspects of PRA is choosing appropriate probability distributions to
represent variability and uncertainty in the input variables. This appendix presents a process for
selecting and fitting distributions to data, including hypothesizing families of distributions, parameter
estimation techniques, and goodness-of-fit tests.

Appendix C - Exposure Point Concentration (EPC)

An important variable in most risk assessments is the concentration term. This appendix presents
the basic principles of the EPC, and different methods for quantifying both variability and parameter
uncertainty in the EPC.

Appendix D - Advanced PRA Models

Sometimes a more complex modeling approach can be used to improve the representativeness of
the probabilistic risk estimates. These approaches are generally anticipated to be applied in Tier 3 of the
tiered approach. Examples include the use of Microexposure Event modeling, geostatisics, and Bayesian
Monte Carlo analysis.

Appendix E - Definitions

A list of definitions is provided at the beginning of each chapter. This appendix provides a
compilation of all definitions presented in the guidance.

Appendix F - Generic Checklist

After a PRA has been submitted to the Agency, an efficient process is needed to evaluate the
accuracy and clarity of the results. This appendix suggests a series of elements of the review process that
can be adopted to structure the review of PRAs for both human health and ecological risk assessment.

Appendix G - Frequently Asked Questions (FAQ) about PRA

Risk assessors and risk managers who read RAGS Volume 3: Part A will find that probabilistic
risk assessment covers a wide variety of topics ranging from statistical theory to practical applications and
policy decisions. U.S. EPA OERR plans to maintain and periodically update a list of frequently asked
questions and responses on an EPA Superfund web page at http://www.epa.gov/superfund/index.htm.
This appendix provides a preliminary list of anticipated questions.
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Appendix H - Index

This index includes keywords and concepts used throughout this guidance document. They are
listed alphabetically with numbers indicating the appropriate chapter and page number(s) within each
chapter. Commas separate page numbers within a chapter or appendix, while semi-colons separate
chapters and appendices. For example: probability density function, 1-5, 6-8; 4-3, 10-12; C-1, 8-10. This
would indicate Chapter 1, page 5, and pages 6-8; Chapter 4, page 3, and pages 10-12; Appendix C, page 1
and pages 8-10.

1.6 NEXT STEPS FOR PRA IMPLEMENTATION

This guidance has presented the current principles, including the tiered approach, and examples
to aid in conducting acceptable PRAs at Superfund sites. Policies and practices will change over time as
scientific advances continue in the future. The PRA Workgroup intends to keep current and provide new
information on EPA Superfund web page at http://www.epa.gov/superfund/index.htm. EPA expects to
make the following PRA support items available on-line in the near future:

*  RAGS Volume 3: Part B: A workbook that serves as a companion to RAGS Volume 3:
Part A; it will include case studies and examples in PRA.

*  Guidance on Probability Distributions: Documents and/or spreadsheets to aid in selecting
and fitting probability distributions for input variables.

*  Guidance on Data Representativeness: A ranking methodology to evaluate data
representativeness for various exposure scenarios.

*  Hands-On Training: Basic MCA training materials, and limited computer hands-on training
sessions available to Regional EPA and State staff.

e Access to PRA Workgroup: A workgroup to provide support on PRA to EPA regional risk
assessors.

e FAQs: A list of Frequently Asked Questions (FAQs) about PRA and responses from the PRA
Workgroup, maintained and periodically updated on-line.

Page 1-30


http://www.epa.gov/superfund/index.htm

RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 1 ~ December 31, 2001

REFERENCES FOR CHAPTER 1
Burmaster, D.E. and E.C. Udell. 1990. A Review of Crystal Ball®. Software Review 10: 343-345.

Cullen, A.C. and H.C. Frey. 1999. Probabilistic Techniques in Exposure Assessment: A Handbook for
Dealing with Variability and Uncertainty in Models and Inputs. Plenum Press, NY.

Finley, B.L. and D.J. Paustenbach. 1994. The Benefits of Probabilistic Exposure Assessment: Three Case
Studies Involving Contaminated Air, Water and Soil. Risk Anal. 14(1):53-73.

Finkel, A.M. 1990. Confronting Uncertainty in Risk Management: A Guide for Decision Makers. Center
for Risk Management, Resources for the Future. Washington, DC.

Maddalena, R.L., T.E. McKone, D.P.H. Hsieh, and S. Geng. 2001. Influential Input Classification in
Probabilistic Multimedia Models. Stochastic Environmental Research and Risk Assessment
15(1):1-17.

Morgan, G.M. and M. Henrion. 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative
Risk and Policy Analysis. Cambridge University Press, NY.

National Research Council (NRC). 1983. Risk Assessment in the Federal Government: Managing the
Process. National Academy Press. Washington, DC.

National Research Council (NRC). 1989. Improving Risk Communication. National Academy Press.
Washington, DC.

National Research Council (NRC). 1994. Science and Judgement in Risk Assessment. National
Academy Press. Washington, DC.

Presidential/Congressional Commission on Risk Assessment and Risk Management. 1997. Risk
Assessment and Risk Management in Regulatory Decision Making. Final Report, Volume 2.

Rugen, P. and B. Callahan. 1996. An Overview of Monte Carlo, A Fifty Year Perspective. Hum Ecol
Risk Assess. 2(4):671-680.

U.S. EPA. 1989a. Risk Assessment Guidance for Superfund (RAGS): Volume I. Human Health
Evaluation Manual (HHEM) (Part A, Baseline Risk Assessment). Interim Final. Office of
Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. NTIS PB90-155581.

U.S. EPA. 1989b. Risk Assessment Guidance for Superfund. (RAGS): Volume II. Environmental
Evaluation Manual. Interim Final. Office of Emergency and Remedial Response, Washington,
DC. EPA/540/1-89/001.

U.S. EPA. 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Final Rule. 40
CFR 300: 55 Federal Register, 8666-8865, March 8.

Page 1-31



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 1 ~ December 31, 2001

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

EPA. 1991a. Risk Assessment Guidance for Superfund (RAGS): Volume I-Human Health
Evaluation Manual Supplemental Guidance: “Standard Default Exposure Factors.” Interim
Final. Office of Solid and Emergency Response, Washington, DC. OSWER Directive No.
9285.6-03.

EPA. 1991b. RAGS Volume I, Human Health Evaluation Manual (Part B: Development of
Risk-based Preliminary Remediation Goals). Office of Emergency and Remedial Response.
Washington, DC. EPA/540/R-92/003. December.

EPA. 1991c. RAGS Volume I, Human Health Evaluation Manual (Part C: Risk Evaluation of
Remedial Alternatives). Office of Emergency and Remedial Response. Washington, DC.
OSWER Directive No. 9285.7-01C. October.

EPA. 1991d. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions.
Office of Solid Waste and Emergency Response, Washington, DC. OSWER
Directive No. 9355.0-30.

EPA. 1992a. Final Guidelines for Exposure Assessment. EPA/600/Z-92/001. 57 Federal Register,
22888-22938, May 29.

EPA. 1992b. Framework for Ecological Risk Assessment. EPA 630/R-92/001. February.

EPA. 1992c¢. Guidance on Risk Characterization for Risk Managers and Risk Assessors.
Memorandum from F. Henry Habicht I, Deputy Administrator. Office of Solid Waste and
Emergency Response, Washington, DC.

EPA. 1992d. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of
Solid Waste and Emergency Response, Washington, DC. OSWER Directive No. 9285.7-081.

EPA. 1993. Use of IRIS (Integrated Risk Information System) Values in Superfund Risk
Assessment. Memorandum from William H. Farland and Henry L. Longest II. Office of Solid
Waste and Emergency Response, Washington, DC. OSWER Directive No. 9285.7.16, December
21.

EPA. 1994a. Role of Ecological Risk Assessment in the Baseline Risk Assessment. Office of Solid
Waste and Emergency Response, Washington, DC. OSWER Directive No. 9285.7-17.

EPA. 1994b. Use of Monte Carlo Simulation in Risk Assessments. Region 3, Hazardous Waste
Management Division. Office of Superfund programs, Philadelphia, PA. EPA/903/F-94/001.

EPA. 1995a. Guidance for Risk Characterization. Office of Research and Development.
Washington, DC. http://www.epa.gov/ORD/spc/rcpolicy.htm.

EPA. 1995b. Memorandum from Carol Browner on Risk Characterization. Office of the
Administrator, Washington, DC. February 22.

Page 1-32



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 1 ~ December 31, 2001

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

U.S.

EPA. 1995c¢. Policy for Risk Characterization. Office of Research and Development. Washington,
DC. http://www.epa.gov/ORD/spc/rcpolicy.htm.

EPA. 1995d. Policy on Evaluating Health Risks to Children. Office of Children’s Health
Protection. Washington, DC. http://www.epa.gov/children/whatwe/rrguide.pdf.

EPA. 1995e. Use of Monte Carlo Simulation in Performing Risk Assessments (Technical Section).
Region 8, Hazardous Waste Management Division, Superfund Management Branch Technical
Guidance, Denver, CO, RA-10.

EPA. 1996. Final Soil Screening Guidance, May 17, 1996. Soil Screening User’s Guide. Office
of Solid Waste and Emergency Response, Washington, DC. EPA 540/R-96/018.

EPA. 1997a. Ecological Risk Assessment Guidance for Superfund: Process for Designing and
Conducting Ecological Risk Assessments. Interim Final. Environmental Response Team, Edison,
NIJ. EPA/540/R-97/006, OSWER Directive No. 9285.7-25, June.

EPA. 1997b. Exposure Factors Handbook, Volume 1. Office of Research and
Development,Washington, DC. EPA/600/P-95/002Fa.

EPA. 1997c. Exposure Factors Handbook, Volume 2. Office of Research and Development,
Washington, DC. EPA/600/P-95/002FDb.

EPA. 1997d. Exposure Factors Handbook, Volume 3. Office of Research and Development,
Washington, DC. EPA/600/P-95/002Fc.

EPA. 1997e. Guidance on Cumulative Risk Assessment. Phase 1. Planning and Scoping.
Washington, DC.

EPA. 1997f. Lognormal Distribution in Environmental Applications. Office of Research and
Development, and Office of Solid Waste and Emergency Response, Washington, DC.
EPA/600/R-97/006. December.

EPA. 1997g. Memorandum from Deputy Administrator Fred Hansen on the Use of Probabilistic
Techniques (including Monte Carlo Analysis) in Risk Assessment, and Guiding Principles for
Monte Carlo Analysis. Office of Research and Development, Washington, DC.
EPA/630/R-97/001. May.

EPA. 1998. Guidelines for Ecological Risk Assessment. Final. National Center for Environmental
Assessment, Washington, DC. EPA/630/R-95/002F.

EPA. 1999. Ecological Risk Assessment and Risk Management Principles for Superfund Sites. Final.
Office of Solid Waste and Emergency Response, Washington, DC. OSWER Directive
No. 9285.7-28P.

EPA. 2000. Risk Characterization Handbook. Office of Science Policy. Office of Research and
Development. EPA 100-B-00-002. December.

Page 1-33



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 1 ~ December 31, 2001

U.S. EPA. 2001a. Risk Assessment Guidance for Superfund: Volume I. Human Health Evaluation
Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments).
Office of Emergency and Remedial Response. Washington, DC. OSWER Directive
No. 9285.7-47. December.

U.S. EPA. 2001b. Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation
Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Interim. Review
Draft—For Public Comment. Office of Emergency and Remedial Response. Washington, DC.
OSWER Directive No. 9285.7-02E-P. September.

U.S. EPA. 2001c. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites.
Office of Emergency and Remedial Response. Washington, DC. OSWER Directive
No. 9355.4-24. December.

U.S. EPA. 2001d. The Role of Screening-Level Risk Assessments and Refining Contaminants of Concern
Baseline Risk Assessments. Office of Solid Waste and Emergency Response. 12" Intermittent
Bulletin, ECO Update Series. EPA 540/F-01/014. June.

Page 1-34



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 2 ~ December 31, 2001

CHAPTER 2

WORKPLAN AND THE TIERED APPROACH
2.0 INTRODUCTION

While probabilistic risk assessment (PRA) can provide useful information for risk management,
not all site decisions will benefit from probabilistic approaches. Similarly, not all PRAs need involve
complex models and quantitative uncertainty analysis methods; often, very useful information can be
obtained by taking the point estimate approach one step further to explore variability in selected input
variables. The level of effort and complexity of the risk assessment should match site-specific needs.
The use of a tiered approach for moving from a point estimate risk assessment to PRAs of varying levels
of complexity is recommended (Figure 2-1 and 2-2). This chapter outlines the basic steps of a tiered
approach for including PRA in a site risk assessment. The major feature of the tiered approach is an
iterative evaluation of the risk estimates developed at each tier to determine if they are sufficient for risk
management decisions. Built into the tiered approach are opportunities for communication with
stakeholders with a view to saving time and costs, and facilitating a successful remedial process.

2.1 WORKPLAN

In practice, the potential value of PRA may be considered at various planning stages of a risk
assessment. For some sites, PRA and point estimate risk assessment approaches may be discussed in the
initial scoping of the risk assessment. For other sites, PRA may become a viable option only after the
point estimate risk assessment results are available. Ideally, PRA should be considered as early as
possible in the planning of risk assessment activities at a site so that sampling plans and data collection
efforts may be appropriately directed. Initial PRA discussions should be included as part of the risk
assessment workplan. If a PRA is being considered following completion of a point estimate risk
assessment, the original workplan for the point estimate assessment should be expanded to include needs
that are unique to PRA.

The methods and procedures used to prepare a workplan to gather additional information for a
baseline point estimate risk assessment are documented in RAGS Volume I: Part A (U.S. EPA, 1989).
This chapter of RAGS Volume 3: Part A describes the procedures that would be used to prepare a
workplan to gather additional information to conduct a PRA. Separate workplans may be warranted for
human health and ecological risk assessments.

Like the quality assurance project plan (QAPP), the workplan for a PRA should document the
combined decisions of the remedial project manager (RPM) and the risk assessor. Meaningful
involvement of stakeholders early in the decision-making process also will save time and effort.

Page 2-1



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 2 ~ December 31, 2001

EXHIBIT 2-1

DEFINITIONS FOR CHAPTER 2

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit. Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is needed.
The number of dust particles in a volume of air is another example. Countably finite implies there is an upper
limit (e.g., days of work per year).

CTE Risk - The estimated risk corresponding to the central tendency exposure.

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and
using these inputs to calculate a range of risk values.

Parameter - A value that characterizes the distribution of a random variable. Parameters commonly characterize the
location, scale, shape, or bounds of the distribution. For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds].
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate).

Point Estimate - In statistical theory, a quantity calculated from values in a sample to estimate a fixed but unknown
population parameter. Point estimates typically represent a central tendency or upper bound estimate of
variability.

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set of point
estimates for exposure and toxicity. Such point estimates of risk can reflect the CTE, RME, or bounding risk
estimate depending on the choice of inputs.

Potentially Responsible Party (PRP) - PRPs are individuals, companies, or any other party that are potentially liable for
payment of Superfund cleanup costs.

Preliminary Remediation Goal (PRG) - Initially developed chemical concentration for an environmental medium that is
expected to be protective of human health and ecosystems. PRGs may be developed based on applicable or
relevant and appropriate requirements (ARARs), or exposure scenarios evaluated prior to or as a result of the
baseline risk assessment. (U.S. EPA, 1991a, 1991b).

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk, generally by
assigning a probability distribution to represent variability or uncertainty in one or more inputs to the risk
equation

Probability Density Function (PDF) - A graph that shows the probability of occurrence of an unknown or variable
quantity. A PDF is used to characterize a continuous random variable, X. PDFs can be used to display the shape
of the distribution for an input variable or output variable of a Monte Carlo simulation. The term density comes
from the concept that a probability at a point, x, for a continuous distribution is equal to the area under the curve
of the PDF associated with a narrow range of values around x.

Probability Distribution - A mathematical representation of the function that relates probabilities with specified
intervals of values for a random variable. Also called a probability model.

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable.
The mass at a point refers to the probability that the variable will have a value at that point.

Random Variable - A variable that may assume any value from a set of values according to chance. Discrete random
variables can assume only a finite or countably infinite number of values (e.g., number of rainfall events per year).
A random value is continuous if its set of possible values is an entire interval of numbers (e.g., quantity of rain in
a year).

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989). The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case)
that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of

contamination, to evaluate potential risk, and to develop alternatives for cleanup.
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EXHIBIT 2-1

DEFINITIONS FOR CHAPTER 2—Continued

RME Risk - The estimated risk corresponding to the reasonable maximum exposure.

Scientific/Management Decision Point (SMDP) - A point during the tiered process in PRA when the risk assessor
communicates results of the assessment to the risk manager. At this point, the risk manager determines whether the
information is sufficient to arrive at a decision or if additional data collection or analysis is needed. SMDPs provide a
tool for transitioning to a subsequent tier or for exiting the tiered process.

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s). Sensitivity analysis can provide a quantitative ranking of the model inputs based on their
relative contributions to model output variability and uncertainty. Common metrics of sensitivity include:

»__ Pearson Correlation Coefficient - A statistic » that measures the strength and direction of linear association
between the values of two quantitative variables. The square of the coefficient (+7) is the fraction of the variance
of one variable that is explained by the variance of the second variable.

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.

»  Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic  that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables. See Pearson (above) for 7~
Uncertainty - Lack of knowledge about specific variables, parameters, models, or other factors. Examples include limited
data regarding the concentration of a contaminant in an environmental medium and lack of information on local fish
consumption practices. Uncertainty may be reduced through further study.

A PRA workplan should be developed early in the risk assessment planning process for the site,
regardless of who will actually develop the PRA (e.g., Environmental Protection Agency (EPA), EPA
contractor, or potentially responsible party (PRP)). If a PRP performs the PRA, the workplan should be
submitted to EPA for review and approval prior to commencing the PRA. It should describe the intended
PRA in sufficient detail so that EPA can determine if the work products will adequately address risk
assessment and management needs (see Exhibit 2-2 for contents of a typical workplan). It is important
that the risk assessor and RPM discuss the scope of the probabilistic analysis and the potential impact it
may have on the remedial investigation/feasibility study (RI/FS).

1= Given the time and effort that can be expected to be invested in conducting a
PRA, it is important that a workplan undergo review and approval by EPA,
prior to proceeding with the assessment.

In general, regions should not accept probabilistic analysis when a workplan for the analysis has
not been submitted to the Agency, and approved by the regional risk assessor and RPM.

The tiered process for PRA, described in Section 2.3, is an iterative process. As new information
becomes available, it should be used to evaluate the need to move to a higher tier. The decision to move
an assessment to a higher tier of complexity should result in a revised workplan reflecting the greater
complexity and demands of the higher tier. The proposed probabilistic sensitivity analysis developed at
the lower tier should be included in the revised workplan, along with a point estimate risk assessment
based on any data collected as part of a lower tier. The probabilistic methods used in a PRA can often be
restricted to the chemicals and pathways of concern that contribute the greatest risk. The less sensitive
chemicals and exposure pathways should still remain in the PRA using point estimates, unless there is a
compelling reason to exclude them from the assessment altogether. As stated in Appendix A (Section
A.1, Risk Communication), the decision to represent an input variable with a point estimate, rather than a
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probability distribution, will generally be made on a
case-by-case basis. The decision will reflect an
attempt to balance the benefits of simplifying the
analysis (e.g., easier to communicate; focuses
discussion on more critical areas) with the potential
for arbitrarily reducing the variance in the output
distribution (e.g., discounting variability in multiple
variables with negligible contributions to risk may
end up having a non-negligible effect on the RME
percentile).

Throughout the process of developing the
PRA, EPA risk assessor and other contributors to the
assessment should have a continuing dialogue to
discuss the elements of the workplan and their
potential impacts on the assessment. This dialogue,
along with interim deliverables, will help to ensure
that the risk assessment report will meet the needs of
the Agency and that any problems are identified and
corrected early in the process.
2.2 SPECIAL ADMINISTRATIVE
CONSIDERATIONS IN PRA

Inclusion of a PRA in the RI/FS will
generate certain administrative activities for the
RPM. The scope of these activities will depend on
whether the PRA is conducted by EPA and its
contractors or by the PRP. The following sections
provide practical advice for the RPM who is
considering applications of PRA at a site.

2.2.1 ScoPrING OF PRA

10.
11.

EXHIBIT 2-2

EXAMPLES OF IMPORTANT
CONTENTS OF A PRA WORKPLAN

Statement of the ecological assessment
endpoints and/or human risk

Summary of the point estimate risk
assessment

Potential value added by conducting a PRA
and proceeding to the subsequent tiers

Discussion of adequacy of environmental
sampling for PRA or moving to a
successive tier (e.g., data quality issues)

Description of the methods and models to
be used (e.g., model and parameter
selection criteria)

Proposal for obtaining and basis for using
exposure factor distributions or ecological
toxicity distributions

Methods for deriving the concentration
term

Proposal for probabilistic sensitivity
analysis

Software (e.g., date and version of product,
random number generator)

Bibliography of relevant literature
Proposed schedule, discussion points, and
expertise needed

The RPM will generally be involved in the discussions among EPA project team, as well as PRPs
and other stakeholders, regarding the level of PRA that is appropriate for the site. As outlined in the
tiered approach (see Section 2.3), the scope and complexity of the PRA should satisfy the risk assessment
and management decision making needs of the site. Team members should meet to discuss the scope of
the PRA, the anticipated community outreach, and the required level of review. These discussions can be
useful for ascertaining the level of contractor involvement, specific requirements for deliverables from
PRPs, and the anticipated number of responses to comments. These meetings should include
consideration of funding, resources, and availability of personnel to work on the PRA.
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2.2.1.1 PRA ScoPE OF WORK FOR FUND-LEAD SITES

A Statement of Work (SOW) should be developed before any work is started on a PRA,
regardless of whether the PRA is to be submitted to the Agency or developed by the Agency. The SOW
should outline the general approach that EPA and its contractor will use in developing the PRA. The
SOW should include the general approaches for the following PRA items: selection of input probability
distributions, documentation of methods and results, selection of computer programs, submission of
computer codes and outputs, comparison of the results from the point estimate and probabilistic
assessments, and the format for presenting the final PRA in the RI/FS document. The SOW should be
sufficiently detailed to support a milestone schedule, which should be submitted as part of the SOW.
Based on the complexity of the PRA, and consistent with the RAGS Volume I: Part D principles of
involving the risk assessor early and often in the risk assessment process (U.S. EPA, 2001), it may be
appropriate to obtain submission of interim deliverables to allow the risk assessor the opportunity to
identify potential problems early in the process.

Within the RI/FS workplan, additional resources may be required to hold additional meetings, to
respond to comments specific to the PRA, and to develop handouts describing PRA in terms accessible to
a wider audience than risk assessors. Where appropriate, these additional resource requirements should
be included in the SOW along with interim and final deliverable dates. Chapter 6 provides guidance on
communicating concepts and results of PRA to various audiences.

2.2.1.2 PRP ScoPE oOF WORK FOR PRP-LEAD SITES

The SOW for PRP-lead sites should follow the same general outline as the SOW for fund-lead
sites (Section 2.2.1.1). Legal documents such as Unilateral Orders, Administrative Orders of Consent,
and Consent Decrees should contain language requiring the PRP to submit a workplan before any work
on the PRA is started. It is also important that interim deliverables, including computer code or
spreadsheet models, be submitted so that EPA can review and verify the results of the PRA. A
comparison of the results of the PRA and the point estimate assessment should be included in the final
RI/FS.

Depending on the complexity of the site and the anticipated PRA, the RPM may be involved in
more extensive negotiations with the PRPs. These negotiations may involve both EPA staff and
contractor support. These activities may need to be included in the appropriate SOWs.

If warranted by the complexity of the PRA, the RPM may consider the need to expand oversight
contracts to include additional resources for the contractor to review and comment on the interim
deliverables and finalize the PRA. This may require a specialized level of expertise that will need to be
discussed with the contractor. Further, the contract section regarding community involvement may also
need to be expanded to include additional resources for developing handouts describing PRA in terms
accessible to a wider audience than risk assessors and for holding additional community meetings.
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2.2.2 DEVELOPMENT OF PROBABILITY DISTRIBUTIONS

A key component of any PRA is the selection of representative probability distributions. The
information available to support the characterization of variability or uncertainty with probability
distributions may be an important factor in the decision to conduct a PRA. In some cases, this may
require resources to conduct exploratory data analysis or to collect site-specific information. As part of
this process, a PRA using preliminary distributions based on the available information may be considered
to identify the variables and exposure pathways that may have the strongest effect on the risk estimates.
Appendix B (Section B.2.0) provides a more detailed description of preliminary distributions and their
potential role in the tiered process. All of these activities may require extensive discussions with the
PRPs and the community. In addition, for PRP-lead sites, they may require additional resources to
critically review the proposed distributions. The RPM should consider these potential activities in
developing the SOW and legal documents to assure adequate resources are available to address them.

2.2.3 EPAREVIEW OF PRA DOCUMENTS

The review of PRA documents may require more time than is usually allocated for point estimate
risk assessments. In part, the additional time is needed for reviewing and discussing input distributions,
for developing and running computer simulations, and for discussing outcomes of the assessment with
the PRP or EPA contractor. The early involvement of an EPA risk assessor may reduce the time needed
for review of the final risk assessment documents, although additional review time may still be required,
depending on the complexity of the PRA conducted.

In addition to EPA’s review, it may also be important to include external reviewers with
specialized expertise in PRA to aid in the review. This additional support may involve resources and
time to review documents and verify simulation results, as well as additional contractual arrangements.
As stated in Chapter 1, Section 1.4 (Conducting an Acceptable PRA), it is important that negotiations
with the PRP address the assurance that adequate details will be included in the submission so that the
methods can be evaluated, and the results independently reproduced.

2.2.4 PEER-REVIEW

Depending on the level of complexity of the PRA, and whether new science is being used, it may
be necessary to conduct a peer review of the document. The Agency’s guidance on peer review (U.S.
EPA, 2000b) should be consulted for information regarding the criteria for determining whether or not a
peer review is appropriate and, if it is, the process that should be followed.

2.2.5 RESPONSE TO COMMENTS ON PRA

The time and resources needed to respond to comments on a PRA may vary depending on the
complexity of the PRA. In developing the SOW, workplan, and schedule for the RI/FS, it is important
that the RPM include adequate resources and time for the thorough evaluation of the PRA. In developing
the response to comments, it may be necessary to consider alternative PRAs submitted by reviewers. The
RPM should plan for sufficient time and resources needed for such activities.
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2.2.6 ADMINISTRATIVE RECORD

Criteria should be established for documentation to be included in the administrative record.
Examples may include documentation regarding the basis for selection of input distributions, a
description of the design of the PRA conducted, the computer codes used in simulations, how tiering
decisions are made, and the results of the PRA. The RPM should consider using technologies such as a
CD-ROM to document the appropriate information for the record.

2.2.7 COMMUNICATION WITH STAKEHOLDERS

Chapter 6 provides details regarding the goal of early involvement of the public in the PRA
process. For example, Section 6.1 of Chapter 6 provides additional topics for consideration in
development of community involvement plans (CIPs) where PRA is considered. In general, early
involvement of the community in the RI/FS process is important, but such involvement should meet the
site-specific needs. Important considerations include resources, funding, and the level of effort
appropriate for the site.

2.2.8 COMMUNICATION WITH EPA MANAGEMENT

Communication with EPA managers regarding PRA is discussed in Chapter 6. The RPM may
need to consider allocating additional resources for prebriefings of appropriate management levels,
development of handouts, and follow-up to the management meetings. Coordination with appropriate
EPA staff and contractors may be necessary to assure the communication is effective.

2.3 OVERVIEW OF THE TIERED APPROACH

The tiered approach presented in this guidance is a process for a systematic, informed
progression to increasingly more complex risk assessment methods including PRA. A schematic
presentation of the tiered approach is shown in Figure 2-1 and Figure 2-2. Higher tiers reflect increasing
complexity and, in many cases, will require more time and resources. Higher tiers also reflect increasing
characterization of variability and/or uncertainty in the risk estimate, which may be important for making
risk management decisions. Central to the concept of a systematic, informed progression is an iterative
process of evaluation, deliberation, data collection, work planning, and communication (see Figure 2-2).
All of these steps should focus on deciding (1) whether or not the risk assessment, in its current state, is
sufficient to support risk management decisions (a clear path to exiting the tiered process is available at
each tier); and (2) if the assessment is determined to be insufficient, whether or not progression to a
higher tier of complexity (or refinement of the current tier) would provide a sufficient benefit to warrant
the additional effort.

The deliberation cycle provides an opportunity to evaluate the direction and goals of the
assessment as new information becomes available. It may include evaluations of both scientific and
policy information. The risk manager, in the decision-making process, is encouraged to seek input on a
regular basis from EPA staff and other stakeholders. Exhibit 2-3 lists some of the potential stakeholders
that may contribute to the deliberation process.
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Although PRA may involve technical dialogue between EPA and outside “experts”, input from

members of the general public who may have an interest in the outcome of the remedial process should
also be sought at appropriate stages of the process. Frequent and productive communication between
EPA and stakeholders throughout the risk assessment process is important for enhancing the success of a

PRA.

EXHIBIT 2-3

STAKEHOLDERS POTENTIALLY INVOLVED IN EPA’S
DECISION-M AKING PROCESS FOR PRA

e EPA risk assessors and managers

* Members of the public

e Representatives from state or county
environmental or health agencies

e  Other federal agencies (e.g., health agencies,
Natural Resource Damage Assessment trustees,
etc.)

e Tribal government representatives

e Potentially responsible parties and their
representatives

e Representatives from federal facilities (e.g.,
Department of Defense, Department of Energy,
etc.)
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Figure 2-1. Schematic Diagram of Tiered Approach.

' Examples of advanced methods for quantifying temporal variability, spatial variability, and
uncertainty (see Appendix D)
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Figure 2-2. Schematic diagram of deliberation/decision cycle in the tiered process for PRA. SMDP refers
to a scientific/management decision point, which implies that the decision involves consideration of not
only the risk assessment, but also Agency policy, stakeholder concerns, cost, schedule, feasibility and other
factors.
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2.3.1 GETTING STARTED

All risk assessments should begin with problem formulation, scoping, preparation of a workplan
(Section 2.1), and data collection. Problem formulation generally is an iterative process where
reevaluation may occur as new information and data become available. The RPM should convene a
scoping meeting prior to any risk assessment activities. Depending on the site-specific factors,
discussion of performing a PRA may be appropriate at this initial scoping meeting. Alternatively, this
discussion may be more productive at a later stage of the tiered process.

The risk manager should initiate discussions with EPA staff and other stakeholders early in the
process, well before planning a risk assessment. Early communication with risk assessors or other EPA
staff can help the risk manager evaluate the adequacy of the current information and plan additional
data-gathering activities. Early communication with communities and other stakeholders should
establish trust and facilitate a successful remedial process (see Chapter 6 on risk communication).

Generally, once the appropriate steps have been taken to adequately formulate and identify the
problem and complete a workplan (Section 2.1), data collection efforts towards the point estimate risk
assessment may begin. The process for conducting a point estimate risk assessment (Tier 1) is
documented elsewhere in various RAGS volumes and related Superfund risk assessment guidance

documents (e.g., U.S. EPA, 1989, 2001).

2.3.2 Tierl

Tier 1 consists of the well-established
process for planning and conducting human
health and ecological point estimate risk
assessments. Typical elements of a Tier 1 risk
assessment, as they relate to higher tiers, are
presented in Exhibit 2-4. A more detailed
discussion of these elements can be found in
Chapters 3 and 4 and Appendix A (Sensitivity
Analysis).

A more detailed schematic presentation
of the tiered process, showing the various
elements of the deliberation/decision cycle and
their linkage to higher tiers is shown in
Figure 2-2. The two main factors to consider
when determining whether the results of a risk
assessment are sufficient for decision making
are: (1) the results of a comparison of the risk
estimate with the risk level of concern; and
(2) the level of confidence in the risk estimate.

In Tier 1, comparison of risk estimates

EXHIBIT 2-4
TYPICAL ELEMENTS OF TIER 1 RISK ASSESSMENT

Analysis Tool - point estimate risk assessment
Variability Modeling - semi-quantitative, using
central tendency exposure (CTE) and reasonable
maximum exposure (RME) estimates as input
variables

Uncertainty Modeling - semi-quantitative using
confidence limits on certain point estimates (e.g.,
concentration term)

Sensitivity Analysis - point estimate calculation of
percentage contribution of exposure pathways, for
both CTE and RME risk. Systematically vary one
input variable at a time across a plausible range and
rank inputs based on sensitivity ratios or sensitivity
scores.

Risk-Based Decision-Making Output - point
estimate of risk—Does the point estimate exceed
the risk level of concern?

with risk levels of concern is relatively straightforward, since the outcome of a point estimate risk
assessment is a single estimate of risk that either will exceed or not exceed the risk level of concern.
Evaluating confidence in the Tier 1 risk estimates is more difficult because quantitative measures of
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uncertainty often are not easily obtained from a point estimate analysis. Uncertainty arises from two
main sources: (1) uncertainty in the inputs to the risk equations that stems from lack of knowledge (data
gaps), and (2) uncertainty in the accuracy of the point estimate that stems from the mathematical
simplifications that are inherent in point estimate computations.

There are usually many sources of uncertainty in the values used to calculate risk. One of the
most familiar (but not always the most significant) is uncertainty in environmental concentration values
of contaminants. This source of uncertainty is usually accounted for by calculating a 95% upper
confidence limit (95% UCL) for the mean concentration in the exposure equation (U.S. EPA, 1992b).
Chapter 5, Appendix C, and Appendix D provide more complete discussions of policies and methods for
quantifying uncertainty in the exposure point concentration. Uncertainties in other variables in the risk
equations (intake rates, exposure frequency and duration, toxicity factors, etc.) may also be significant,
and are often addressed by choosing inputs that are more likely to yield an overestimate than an
underestimate of risk. These sources of uncertainty are usually addressed qualitatively, by providing a
discussion of the likely direction and magnitude of the error that may be associated with the use of the
specific inputs (U.S. EPA, 1989). Stakeholders can provide useful information about uncertain variables
and sources for site-specific data. This is an important reason to ensure that stakeholders are given the
opportunity to review the risk assessment and be involved in the process.

Decision Alternatives

The evaluation of the point estimate risk assessment will yield one of two outcomes:
(1) sufficient for risk management decisions; or (2) insufficient for risk management decisions. If the
risk manager views the results of the point estimate risk assessment as sufficient for risk management
decision making, the risk manager can exit the tiered approach and complete the RI/FS process
(Figure 2-2). Depending on site-specific information, the results may support a decision for “no further
action” or for a “remedial action.” A “no further action” decision may result when the risk estimate is
clearly below the level of concern (e.g., the National Oil and Hazardous Substances Pollution
Contingency Plan (NCP) risk range of 1E-04 to 1E-06) and confidence in the risk estimate is high. A
decision for remedial action may result when a national standard (e.g., maximum contaminant levels
(MCLs) applied to groundwater) may be exceeded, or when the risk is clearly above the level of concern
(e.g., the NCP risk range of 1E-04 to 1E-06) and confidence in the risk estimate is high. The decision for
a specific remedial action involves consideration of the NCP’s nine criteria for remedial decisions (U.S.
EPA, 1990) and other site-specific factors.

An alternative conclusion would be that the results of the point estimate risk assessment are not
sufficient for risk management decision making. For example, results may not be sufficient when the risk
estimate is within the NCP risk range of 1E-04 to 1E-06 and confidence in the risk estimate is low. In
this case, the risk manager should not exit the tiered approach. Instead, appropriate steps should be taken
to increase the confidence that a management decision is protective. These steps may include discussing
the point estimate sensitivity analysis, identifying data gaps, communicating with stakeholders (e.g., to
obtain site-specific information), discussing the potential value of conducting a PRA (or a more advanced
probabilistic analysis), work planning, and additional data collection (see Figure 2-2).

A sensitivity analysis can be a valuable component of the evaluation of a risk assessment.
Sensitivity analysis can identify important variables and pathways that may be targets for further analysis
and data collection. The type of information provided by a sensitivity analysis will vary with each tier of
a PRA. Several methods are available at each tier, and the results of the analysis can vary greatly
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depending on the methods used. A comprehensive discussion of these methods is presented in
Appendix A and briefly summarized here. Sensitivity analysis in Tier 1 will usually involve relatively
simple methods and will not involve Monte Carlo simulation. A typical approach would be to calculate
the relative contributions of individual exposure pathways to the point estimate of risk. A more complex
approach involves selecting values from a plausible range for a specific input variable to the exposure or
risk equation and to use these values (i.e., low-end estimate and high-end estimate) to calculate
corresponding point estimates of risk. The sensitivity of the risk estimate to each variable is then
evaluated by calculating a sensitivity ratio, which is simply the percentage change in the risk estimate
divided by the percentage change in the input variable value (see Appendix A, Section A.2.1.3,
Sensitivity Ratios).

The sensitivity ratio (SR) approach is typically applied to one variable at a time because jointly
varying point estimates for multiple variables can be cumbersome (see Chapter 3, Table 3-2 for an
example of two jointly varied inputs). Information provided by the SR approach is generally limited to
bounding estimates of risk based on small deviations and/or plausible ranges of point estimates for
inputs. Because the point estimate approach does not generate a distribution of risk, SRs cannot provide
quantitative information about the relative contributions of input variables to the variance in risk or the
uncertainty in selected percentile of the risk distribution. This limitation of the SR approach may be
particularly important if the ranking of input variables may change depending on the percentile range that
is evaluated. For example, in a probabilistic analysis, the soil ingestion rate variable may contribute most
to the variability in risk across the entire risk distribution, but the exposure duration may be the driver in
the high-end (> 90" percentile) of the risk distribution, where the RME risk is defined. In addition, for
standard product-quotient risk equations, the SR approach also has difficulty distinguishing the relative
importance of exposure variables in the risk equation. Appendix A presents a hypothetical example to
illustrate why this happens for the common risk equations. An improvement over the SR approach,
called Sensitivity Score, involves weighting each ratio by the variance or coefficient of variation of the
input variable when this information is available. In general, the most informative sensitivity analysis
will involve Monte Carlo techniques (see Appendix A, Table A-1). Potential strengths and weaknesses
of sensitivity analysis methods may be an important factor in deciding whether or not to conduct a
probabilistic analysis in Tier 2.

Once data gaps have been identified, steps may be taken to gather additional data and revise the
point estimates of risk based on these data. As with any data collection effort, the data quality objectives
(DQO) process should be followed to obtain samples appropriate for the risk assessment and sufficient to
support the remedial decision (U.S. EPA, 1992a, 1993, 1994, 2000a). The deliberation and decision
cycle (Figure 2-2) should then be reiterated to determine if the refined risk assessment is sufficient to
support risk management decisions. The collection of additional data may also provide a compelling
reason to consider moving to Tier 2 and conducting a PRA. If, during the PRA discussions, it is
determined that information from a PRA may influence the risk management decisions, PRA may be
warranted. This iterative process of collecting data, recalculating point estimates, and reconsidering the
potential value of PRA may continue until sufficient data are available to support risk management
decisions, or data collection efforts are not possible due to resource constraints. For example, soil
ingestion rate data may be limited to a few studies with small sample sizes, but a new soil ingestion study
may be prohibitively expensive, time consuming, or difficult to conduct in a manner that will reduce the
uncertainty in the risk estimate. Uncertainty due to data quantity is not necessarily a reason to exit the
tiered process at Tier 1.
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In cases where there is uncertainty in selecting a probability distribution because of small sample
sizes, it may be informative to develop a preliminary probability distribution such as a triangular or
uniform (see Appendix B, Section B.2.0). These preliminary distributions will contribute to the
variability in the risk estimate, and can therefore be included in the probabilistic sensitivity analysis.
Results of Monte Carlo simulations that include one or more preliminary distributions may lead to
several alternative decisions. If the sensitivity analysis suggests that the risk estimate is relatively
insensitive to the variable described with the distribution, then the uncertainty associated with the choice
of a distribution should not affect the risk management decision process using the tiered approach (e.g.,
choice of RME percentile, derivation of a PRG). In other words, the choice would be to continue with
the tiered process. If, however, the variables described by preliminary distribution are important sources
of variability or uncertainty in the risk estimate, then this information should be presented in the
scientific management decision point (see Figure 2-2). The uncertainty may be sufficiently important in
the risk management decision to warrant additional data collection efforts. Conversely, it may be
necessary to exit the tiered process if the uncertainty cannot be reduced. Although the tiered process may
be stopped at this point, it can still be informative to present the results from the PRA. For example,
information about uncertainty may affect the choice of the percentile used to characterize the RME risk.
In addition, it may be appropriate to weight the results of the point estimate analysis more heavily in the
risk management decision when uncertainty in the PRA is high. Further guidance on appropriate choices
for distributions based on the information available to characterize variability is given in Appendix B.

PRA also may be warranted if it would be beneficial to know where on the risk distribution the
point estimate lies. An example of this would be a risk estimate that is within the NCP risk range of
1E-04 to 1E-06. The assessment may be sufficient to support risk management decisions if it could be
shown that the point estimate of risk lies sufficiently high in the risk distribution. For example, a “no
further action” decision may be strengthened if the point estimate is at the 99" percentile of the risk
distribution, if risks in lower percentiles of the RME risk range are below the NCP risk range, and if
there is high confidence in the risk result. This type of evaluation can be conducted using PRA
techniques.

Even if the RME point estimate of risk exceeds the risk level of concern, and PRA is not needed
to confirm this result, information from a PRA can be helpful in determining a strategy for achieving a
protective preliminary remediation goal (PRG). A detailed discussion of the use of PRA in setting
remediation action levels is given in Chapter 5. The advantages and disadvantages of the point estimate
approach and PRA are presented in Chapter 1 (Exhibits 1-5 and 1-6).

2.3.3 TIER2

Tier 2 of the tiered approach to risk assessment will generally consist of a simple probabilistic
approach such as one-dimensional Monte Carlo analysis (1-D MCA). A 1-D MCA is a statistical
technique that may combine point estimates and probability distributions to yield a probability
distribution that characterizes variability or uncertainty in risks within a population (see Chapter 1).
Guidance for selecting and fitting distributions is presented in Appendix B. Typical elements of a Tier 2
risk assessment, as they relate to higher and lower tiers are presented in Exhibit 2-5. A more detailed
discussion of these elements can be found in Chapters 3 and 4, and Appendix A (Sensitivity Analysis).
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While most of the Tier 2 assessments
are expected to use 1-D MCA to characterize
variability in risk, sometimes a 1-D MCA of
uncertainty may be of interest. For example,
as suggested in Exhibit 2-5, a probability
distribution for uncertainty in the arithmetic
mean or median (i.e., 50" percentile) for
selected input variables may be specified in a
1-D MCA to yield a probability distribution
for uncertainty for the central tendency risk
estimate. However, as most Tier 2
assessments are expected to combine input
distributions for variability, this guidance
focuses on 1-D MCA for characterizing
variability in the risk estimate.

Decision Alternatives

Generally, the three main questions to
consider when determining whether the results
of a 1-D MCA are sufficient for risk
management decisions are: (1) What is the
RME risk range and how does it compare to

EXHIBIT 2-5
TYPICAL ELEMENTS OF TIER 2 RISK ASSESSMENT

Analysis Tool - 1-D MCA

Variability Modeling - full characterization of
variability in risk using PDFs or PMFs for input
variables

Uncertainty Modeling - semi-quantitative estimate
of uncertainty using iterative 1-D M CA simulations
of variability, or a single 1-D MCA of uncertainty in
the CTE risk

Sensitivity Analysis - varying multiple variables
with probability distributions gives a quantitative
ranking (e.g., correlation coefficient) of the relative
contributions of exposure pathways and variables to
CTE or RME risk

Risk-Based Decision-Making Output - risk
distribution for variability: Does the risk level of
concern fall within an acceptable range on the risk
distribution (i.e., RME range)? Also, risk
distribution for uncertainty: What is the 90%
confidence interval for the CTE risk?

the level of concern?; (2) Where does the
point estimate risk lie on the risk distribution?;
and (3) What is the level of confidence in the
risk estimate? In Tier 2, similar to the point estimate approach, the level of confidence in a single

1-D MCA risk distribution is generally addressed in a qualitative or semi-quantitative way. As discussed
in Chapter 1 (Section 1.2.4) and Chapter 3 (Section 3.4.1), one should avoid developing input
distributions to a PRA model that yield a single risk distribution that intermingles, or represents both
variability and uncertainty. In Tier 2, the preferred approach for characterizing uncertainty in the risk
estimate is to perform multiple 1-D MCA simulations (of variability), which uses a different point
estimate for uncertainty for one or more parameters, combined with probability distributions for
variability for one or more variables. Chapter 3 (see Table 3-2 and Figures 3-3 and 3-4) presents an
example of iterative 1-D MCA simulations using combinations of point estimates characterizing
uncertainty for two variables. More advanced PRA techniques such as two-dimensional Monte Carlo
analysis (2-D MCA), in which distributions for variability and uncertainty are propagated separately
through an exposure model, can be undertaken in Tier 3 (Appendix D).

In order to use a PRA to determine if risks are unacceptable and to develop preliminary
remediation goals (PRGs) that are protective of the RME individual (see Chapter 5), a single point from
the RME risk range should be selected (e.g., 95" percentile). In general, this can be accomplished by
selecting an estimate within the RME risk range based on the level of confidence in the output of the
1-D MCA. Uncertainty in risk estimates may be quantified or reduced by considering site-specific
factors, biological data, and toxicity data. Stakeholders can provide useful information about uncertain
variables and sources for site-specific data. More detailed guidance for choosing a percentile value
within the RME range is provided in Chapter 7.
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The evaluation of the risk assessment in a 1-D MCA in Tier 2 will yield one of two outcomes:
(1) sufficient for risk management decisions; or (2) insufficient for risk management decisions. If
determined to be sufficient, the risk manager can exit the tiered approach and complete the RI/FS
process. The results of a 1-D MCA may support a decision for “no further action” or for a “remedial
action.” A “no further action” decision may result when the RME risk range (or a specified point in the
RME risk range) is clearly below the level of concern (e.g., Hazard Index=1) and confidence in the risk
distribution is high. A decision for remedial action may result when a national standard (e.g., MCLs
applied to groundwater) may be exceeded, or when the RME risk range (or a specified point in the RME
risk range) is clearly above the level of concern and confidence in the risk distribution is high. The
decision for a specific remedial action involves consideration of the NCP’s nine evaluation criteria for
remedial decisions (U.S. EPA, 1990; see Chapter 1) and other site-specific factors.

An alternative conclusion at the end of a Tier 2 analysis would be that the results of the
1-D MCA are not sufficient for risk management decisions. There are several factors that might support
this conclusion:

(1) The RME risk range is close to the NCP risk range and confidence in the risk distribution is
low. Inthis case, the risk manager might decide to not exit the tiered approach, and instead
continue taking appropriate steps to increase the confidence in the risk estimate.

(2) Uncertainty is high and it is believed that more than one variable is a major contributor to the
uncertainty in the risk estimate. It can be difficult to explore uncertainty in more than one
variable using 1-D MCA simulations of variability, even using iterative approaches discussed
in Chapter 3 (Section 3.4.1).

(3) Results of the point estimate risk assessment differ significantly from the results of the
1-D MCA. While the RME risk estimates are not expected to be identical, typically the
RME point estimate will correspond with a percentile value within the RME range (i.e, 90"
to 99.9" percentile) of the risk distribution. If the RME point estimates fall outside this
range, further steps may be warranted to evaluate the choices for input variables—both the
RME point estimates, and the probability distributions and parameters (including truncation
limits) for the 1-D MCA.

The deliberation/decision cycle (Figure 2-2) between Tier 2 and Tier 3 is similar to the cycle
between Tier 1 and 2 and includes discussing the Tier 2 probabilistic sensitivity analysis, identifying
data gaps, communicating with stakeholders (e.g., to obtain site-specific information), discussing the
potential value of further analysis with probabilistic methods, work planning, and additional data
collection. As with the Tier 1 assessment, additional data collection should follow the DQO process
(U.S. EPA, 1992a, 1993, 1994, 2000a) and point estimates of risk should be revisited with the new data.
The deliberation/decision cycle is an iterative process in which the level and complexity of the analysis
increases until the scope of the analysis satisfies decision-making needs. This iterative process should
continue until sufficient data are available to support risk management decisions. As in all tiers,
stakeholder involvement should be encouraged. Once a 1-D MCA for variability or uncertainty is
completed and is available for review and interpretation, a stakeholder meeting should be convened.
Interested stakeholders should be given the opportunity to review the 1-D MCA and provide comments.
Communication issues specific to PRA are discussed in Chapter 6 (Risk Communication).
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In addition to identifying data gaps, consideration for a refined 1-D MCA or more advanced PRA
techniques may begin as a means of determining what benefits they may confer to the decision-making
process. If, during further discussions of PRA, it is determined that information from a more advanced
PRA may influence the risk management decision, the use of an advanced PRA may be warranted. If
additional data have been collected, the point estimate and 1-D MCA should be refined. Specifically, an
advanced PRA may be warranted if it would be beneficial to characterize uncertainty in more than one
variable at a time. A 2-D MCA can simultaneously characterize variability and uncertainty in multiple
variables and parameter estimates. The decision to employ such advanced methods should be balanced
with considerations of resource constraints and the feasibility of reducing uncertainty in a given variable.
A detailed discussion of advanced PRA methods, including 2-D MCA, is provided in Appendix D.

2.3.4 TIiER3

Tier 3 of the tiered approach to risk assessment consists of advanced PRA methods, such as

2-D MCA, Microexposure Event Analysis
(MEE), geostatistical analysis of concentration
data, and Bayesian statistics. Typical elements
of a Tier 3 risk assessment are presented in
Exhibit 2-6. A more detailed discussion of
these elements is given in Appendix D. As in
other tiers, Tier 3 includes an iterative process
of deliberation and decision making in which
the level and complexity of the analysis
increases until the scope of the analysis satisfies
decision-making needs. As in all tiers,
stakeholder involvement is encouraged.

Generally, the various elements of the
deliberation/decision cycle for Tier 3 are the
same as those for Tier 1 and 2 (Figure 2-2). An
advanced PRA would be conducted and made
available for review to the risk manager and
stakeholders. The risk manager must determine
if the results of the advanced PRA are sufficient
for risk management decision making. Issues to
consider when making this determination are
similar to those identified for evaluating point
estimate risk results and 1-D MCA results, and
focus on evaluating the sources and magnitude
of uncertainty in relation to the established risk

EXHIBIT 2-6
TYPICAL ELEMENTS OF TIER 3 RISK ASSESSMENT

Analysis Tool - 2-D MCA, MEE, geostatistics, and
Bayesian statistics

Variability Modeling - full characterization using
PDFs or PMFs for input variables

Uncertainty Modeling - quantitative, segregating
uncertainty from variability, and associated with
multiple variables simultaneously

Sensitivity Analysis - varying parameters of
probability distributions to identify and rank order
parameter uncertainty with the same sensitivity
analysis methods used for Tier 2 (see Appendix A).
Also, explore alternative choices of probability
distributions and sources of model uncertainty.

Risk-based Decision-M aking Criteria - risk
distribution for variability with confidence
limits—Does the risk level of concern fall within an
acceptable range on the risk distribution (i.e., RME
range), and with an acceptable level of
uncertainty?

level of concern. If the results are sufficient for risk management decisions, the risk manager may exit
the tiered approach and complete the RI/FS process. If the results are not found to be sufficient for risk
management decisions, data gaps should be identified and if additional data are collected, all stages of
the risk assessment, including the advanced PRA, the 1-D MCA, and the point estimate risk assessment,
should be refined. Alternatively, additional advanced PRA methods may be explored. Refer to
Appendix D for a discussion of more advanced PRA techniques. Overall, analysis should continue
within Tier 3 until sufficiently informed risk management decisions can be made.
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2.3.5 FLEXIBILITY IN DEFINING TIERS

The assignment of specific analytical tools to Tiers 1, 2, and 3 (Figure 2-1 and Exhibits 2-4
through 2-6) results in generalizations that may not be applicable to all site assessments. Upon
completion of the deliberation phase between Tier 1 and Tier 2, the conclusion may be that analytical
tools in Tier 3 would be applicable and beneficial for addressing decision making issues. For example,
geospatial modeling may be beneficial for improving estimates of uncertainty in the exposure point
concentration or in designing field sampling plans to further reduce uncertainty. An improved estimate
of the 95% UCL from geospatial analysis (shown in Exhibit 2-6 as a Tier 3 analytical tool) would then be
integrated into a Tier 2 assessment, or the complete distribution for uncertainty in the mean concentration
could be incorporated into a 2-D MCA in Tier 3. Flexibility in defining the level of complexity of the
analysis used in a given tier is essential to accommodating the wide range of risk assessment issues likely
to be encountered. An important benefit gained from use of the tiered approach is to ensure a
deliberative process in the advancement of the assessment to higher levels of complexity. Itis far more
important that a deliberative process take place and be documented, than it is to constrain a set of
analytical tools to a specific tier.
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CHAPTER 3

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH ASSESSMENT

3.0 INTRODUCTION

This chapter outlines how probabilistic analysis may be applied to human health risk assessments
in the Environmental Protection Agency’s (EPA) Superfund program. The paradigm for human health
risk assessment as described in EPA’s Risk Assessment Guidance for Superfund (U.S. EPA, 1989),
includes data collection/evaluation in addition to exposure and toxicity assessment and risk
characterization. Although the strategies and methods used in collecting and analyzing data can
significantly impact the uncertainty in a risk estimate, they are issues relevant to risk assessment in
general, and are addressed in other guidance documents, such as EPA’s Guidance for Data Useability in
Risk Assessment (U.S. EPA, 1992b). RAGS Volume 3: Part A focuses on a tiered approach for
incorporating quantitative information on variability and uncertainty into risk management decisions.

3.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES

Exhibit 3-1 gives the general equation

used for calculating exposure, often expressed as A

an average Qally intake. In a point est}mate (AT, BT FOm TS

approach, single values (typically a mixture of

average and high-end values) are input into the Cx CRx BEF «x BD

equation. In probabilistic risk assessment (PRA), = Eq. 3-1

the only difference is that a probability BW = AT

distribution, rather than single value, is specified where,

for one or more variables. A Monte Carlo I = dailyintake ‘

simulation is executed by repeatedly selecting L = combmemd conesiizion

random values from each of these distributions CR = contactrate (ingestion, inhalation,
. . dermal contact)

and calculating the corresponding exposure and EF = exposure frequency

risk. For the.ma.]orl‘Fy of PRAS, it is expected that I = oyosi dumien

probability distributions will be used to BW = body weight

characterize inter-individual variability, which AT = averaging time

refers to true heterogeneity or diversity in a

population. Thus, variability in daily intake, for
example, can be characterized by combining
multiple sources of variability in exposure, such as ingestion rate, exposure frequency, exposure
duration, and body weight. Variability in chemical concentrations (Chapter 5 and Appendix C) and the
toxicity term in ecological risk assessment (Chapter 4) may also be considered in risk calculations.
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EXHIBIT 3-2

DEFINITIONS FOR CHAPTER 3

95% UCL for mean - The one-sided 95% upper confidence limit for a population mean; if a sample of size (n) was
repeatedly drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the
time. It is a measure of uncertainty in the mean, not to be confused with the 95" percentile (see below), which is a
measure of variability. As sample size increases, the difference between the UCL for the mean and the true mean
decreases, while the 95™ percentile of the distribution remains relatively unchanged.

95™ percentile - The number in a distribution that is greater than 95% of the other values of the distribution, and less
than 5% of the values. When estimated from a sample, this quantity may be equal to an observed value, or
interpolated from among two values.

Arithmetic Mean (AM) - A number equal to the average value of a population or sample. Usually obtained by summing
all the values in the sample and dividing by the number of values (i.e., sample size).

Assessment Endpoint - The specific expression of the population or ecosystem that is to be protected. It can be
characterized both qualitatively and quantitatively in the risk assessment.

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in the population,
usually considered to be the arithmetic mean or median of the risk distribution.

Credible Interval - A range of values that represent plausible bounds on a population parameter. Credible intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95" percentile risk).
The term is introduced as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches.
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to describe a range of possible
values for the arithmetic mean.

CTE Risk - The estimated risk corresponding to the central tendency exposure.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF or PMF, gives the cumulative probability
of occurrence for a random independent variable. Each value ¢ of the function is the probability that a random
observation x will be less than or equal to c.

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an
exposure unit. Estimates of the EPC represent the concentration term used in exposure assessment.

Frequency Distribution/Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population. It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

High-end Risk - A risk descriptor representing the high-end, or upper tail of the risk distribution, usually considered to
be equal to or greater than the 90™ percentile.

Low-end Risk - A risk descriptor representing the low-end, or lower tail of the risk distribution, such as the 5" or 25"
percentile.

Parameter - A value that characterizes the distribution of a random variable. Parameters commonly characterize the
location, scale, shape, or bounds of the distribution. For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds].
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate).

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random
variable. The density at a point refers to the probability that the variable will have a value in a narrow range about
that point.

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable.
The mass at a point refers to the probability that the variable will have a value at that point.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S. EPA,
1989). The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that is
still within the range of possible exposures.
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EXHIBIT 3-2
DEFINITIONS FOR CHAPTER 3— Continued
Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the

values of the model’s input(s). Sensitivity analysis can provide a quantitative ranking of the model inputs based on
their relative contributions to model output variability and uncertainty. Common metrics of sensitivity include:

»__ Pearson Correlation Coefficient - A statistic 7 that measures the strength and direction of linear
association between the values of two quantitative variables. The square of the coefficient () is the
fraction of the variance of one variable that is explained by the variance of the second variable.

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called
elasticity.

»  Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic » that
measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables. See Pearson (above) for 7.

Target Population - The set of all receptors that are potentially at risk. Sometimes referred to as the “population of
concern”. A sample population is selected for statistical sampling in order to make inferences regarding the target
population (see Appendix B, Section B.3.1, Concepts of Populations and Sampling).
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Figure 3-1 shows a hypothetical example of an input distribution for drinking water ingestion
rate. Assume that survey data for drinking water ingestion rates were compiled in order to select and fit a
probability distribution. One of the first steps in exploring the data set may be to plot a frequency
distribution. In the graph, the height of the bars (the y-axis) represents the relative frequency of ingestion
rates in the population and the spread of the bars (the x-axis) is the varying amounts of water ingested
(L/day). Since ingestion rate is a continuous random variable, the probability distribution can also be
represented graphically with a probability density function (PDF). Assume that the following parameters
are estimated from the sample: arithmetic mean=1.36, standard deviation=0.36, geometric mean=1.31,
and geometric standard deviation=1.30. These parameter estimates may be used to define a variety of
probability distributions, including a 2-parameter lognormal distribution. The fit of the lognormal
distribution can be evaluated by visual inspection using the PDF given by Figure 3-1, or by a lognormal
probability plot (see Appendix B).

The y-axis for a PDF is referred to as the probability density, where the density at a point on the
x-axis represents the probability that a variable will have a value within a narrow range about the point.
This type of graph shows, for example, that there is a greater area under the curve (greater probability
density) in the 1-2 L/day range than 0-1 L/day or 2-3 L/day. That is, most people reported consuming
1-2 L/day of drinking water. By selecting a lognormal distribution to characterize inter-individual
variability, we can state more precisely that 1 L/day corresponds to the 15" percentile and 2 L/day
corresponds to the 95™ percentile, so approximately 80% (i.e., 0.95-0.15=0.80) of the population is likely
to consume between 1 and 2 L/day of drinking water.
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Figure 3-1. Example of a frequency distribution for adult drinking water ingestion rates, overlaid by
a graph of the probability density function (PDF) for a lognormal distribution defined by the sample
statistics. The distribution represents inter-individual variability in water intakes and is characterized
by two parameters. Typically, the geometric mean (GM) and geometric standard deviation (GSD), or
the arithmetic mean (AM) and arithmetic standard deviation (SD) are presented to characterize a
lognormal distribution.
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3.1.1 DEVELOPING DISTRIBUTIONS FOR EXPOSURE VARIABLES

When site-specific data or representative surrogate data are available, a probability distribution
can be fit to that data to characterize variability. Appendix B describes how to fit distributions to data,
how to assess the quality of the fit and discusses topics such as the sensitivity of the tails of the
distribution to various PDFs, and correlations among variables. Many of the issues discussed below
regarding the use of site-specific data or surrogate data are relevant to both point estimate risk assessment
and PRA.

For the majority of the exposure variables, such as exposure duration, water intake rates, and
body weight, site-specific data will not be available. The risk assessor will have to either select a
distribution from existing sources, or develop a distribution from published data sets and data summaries.
Examples of sources for these distributions and data sets are EPA’s Exposure Factors Handbook (U.S.
EPA, 1997a,b,c), Oregon Department of Environmental Quality’s Guidance for Use of Probabilistic
Analysis in Human Health Risk Assessment (Oregon DEQ, 1998), and the scientific literature. An
appropriate PDF should be determined in collaboration with the regional risk assessor. The process by
which PDFs are to be selected and evaluated should be described in the workplan. EPA’s Superfund
program is in the process of developing a ranking methodology to evaluate data representativeness
relevant to various exposures scenarios. Following peer review and project completion, the results will
be posted on EPA Superfund web page.

ww At this time, EPA does not recommend generic or default probability
distributions for exposure variables.

Regardless of whether a PDF is derived from site-specific measurements or obtained from the
open literature, the risk assessor should carefully evaluate the applicability of the distribution to the
target population at the site. The distribution selected should be derived from the target population or
from a surrogate population that is representative of the target population at the site. For example, a
distribution based on homegrown vegetable consumption in an urban population would not be
representative for a farming population in the Midwest. If such a distribution were to be used, (and no
other data were available), the uncertainty and bias that this PDF would impart to the risk estimate should
be communicated to the risk decision makers.

For purposes of risk management decision making, the significance of not having site-specific
data should be evaluated in the context of representativeness and sensitivity analysis. If published data
are representative of the potentially exposed population, then site-specific data may be unnecessary. For
example, body weights of children and adults have been well studied from national surveys and can
generally be considered reasonable surrogates for use in site risk assessments. Furthermore, even if a
variable is likely to vary among different exposed populations, it may not contribute greatly to the
variance or uncertainty in risk estimates. In this case, surrogate data may also be used with confidence in
the risk estimate. In addition, the PRA may be simplified by using point estimates instead of probability
distributions for the “less sensitive” exposure variables. In part, the decision to use a point estimate in
lieu of a probability distribution must balance the benefit of simplifying the analysis and the
communication process (see Chapter 6), against the reduction (however small) in the variance of the risk
distribution. The utility of sensitivity analysis in identifying the important factors in a risk estimate is
discussed further below and in Appendix A.
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It is also important to evaluate the sample design and sample size when deciding to apply a
distribution to a specific site. Depending on the situation, a very large data set derived from a national
population may be more useful than a site-specific data set derived from a small, incomplete, or poorly
designed study. Appendix B provides additional discussion on how to evaluate the data and studies that
form the basis for a distribution. Often, the question arises regarding the appropriateness of combining
data sets to derive a PDF. Before combining data sets, a careful evaluation should be made of the
representativeness of the study populations, and the similarity in study designs and quality. In addition,
statistical tests may be used to determine whether or not data sets are compatible with a common
probability distribution (Hedges and Olkin, 1985; Stiteler et al., 1993). In general, risk assessors should
be reluctant to combine data sets for the purpose of developing a PDF that characterizes variability. Due
to the number of potential differences inherent in the study design, alternative data sets may provide a
better measure of uncertainty in the probability distribution and parameter estimates, rather than a means
of increasing the overall sample size for defining a single probability distribution. For example, if
multiple data sets are available, a more informative approach may be to incorporate each data set into the
PRA in a separate analysis, as a form of sensitivity analysis on the choice of alternative data sets.

Each probability distribution used in a Monte Carlo Analysis (MCA) should be presented with
sufficient detail that the analysis can be reproduced (see Chapter 1, Section 1.4, Condition #2). This
information may be presented in tabular and/or graphical summaries. Important information for a
summary table would include a description of the distribution type (e.g., lognormal, gamma, etc.), the
parameters that define the distribution (e.g., mean and standard deviation, and possibly upper and lower
truncation limits for a normal distribution), units, and appropriate references (see Table 3-6, for
example). The table should also indicate whether the distribution describes variability or uncertainty.
The report should discuss the representativeness of the data and why a particular data set was selected if
alternatives were available. Graphical summaries of the distributions may include both PDFs and
cumulative distribution functions (CDFs), and should generally be used to document distributions that
characterize site-specific data.

3.1.2 CHARACTERIZING Risk UsINnG PRA

Quantitative risk characterization involves evaluating exposure (or intake) estimates against a
benchmark of toxicity, such as a cancer slope factor or a noncancer hazard quotient. The general
equation used for quantifying cancer risk from ingestion of contaminated soil is shown in Exhibit 3-3,
and the equation for noncarcinogenic hazard is shown in Exhibit 3-4. A Hazard Index is equal to the sum
of chemical-specific Hazard Quotients.

At this time, this guidance does not propose probabilistic approaches for dose-response in human
health assessment and, further, discourages undertaking such activities on a site-by-site basis. Such
activities require contaminant-specific national consensus development and national policy development
(see Chapter 1, Section 1.4.1). Chapter 4 discusses methods for applying probabilistic approaches to
ecological dose-response assessment.

The probabilistic calculation of risk involves random sampling from each of the exposure
variable distributions. The output of this process is a distribution of risk estimates. When the calculation
of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to sample the
variables at random, the resulting distribution of risk estimates can be displayed in a similar fashion. The
type of summary graph used to convey the results of a MCA depends on the risk management needs. For
example, Chapter 1, Figure 1-3 shows how a PDF for risk might be used to compare the probabilistic
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estimate of the RME risk (e.g., 95" percentile) with a risk level of concern. This type of summary can
also be used to effectively illustrate the relationship between the RME risk determined from point
estimate and probabilistic approaches.

EXHIBIT 3-3

EQUATION FOR CANCER RISK

Risk = Dose » O5F

Example for Soil Ingestion

O fH= OFx FF = BD

Risk = w C5F
EW =« AT
where,
C = concentration in soil (mg/kg) ED = exposure duration (years)
IR = soil ingestion rate (mg/day) BW = body weight (kg)
CF = conversion factor (1E-06 kg/mg) AT = averaging time (days)
EF = exposure frequency (days/year) CSF = oral cancer slope factor (mg/kg-day)™!

EXHIBIT 3-4

EQUATION FOR NONCANCER HAZARD QUOTIENT

Daze Corcentration
ar

Hazard Chiatient =
D RfC

where,
RfD = reference dose, oral or dermally adjusted (mg/kg-day)
RfC = reference concentration, inhalation (ug/m?)

In addition, the CDF can be especially informative for illustrating the percentile corresponding to
a particular risk level of concern (e.g., cancer risk of 1E-04 or Hazard Index of 1). Figure 3-2 illustrates
both the PDF and CDF for risk for a hypothetical scenario. Factors to consider when applying the PDF
or CDF are discussed in Chapter 1, Exhibit 1-3. When in doubt about the appropriate type of summary to
use, both the PDF and CDF should be provided for all risk distributions. At a minimum, each summary
output for risk should highlight the risk descriptors of concern (e.g., 50, 90", 95®, and
99.9" percentiles). It can also be informative to include the results of the point estimate analysis—the
risks corresponding to the central tendency exposure (CTE) and the reasonable maximum exposure
(RME).
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Figure 3-2. Hypothetical PRA results showing a PDF (top panel) and CDF (bottom panel) for
cancer risk with selected summary statistics. The CDF rises to a maximum cumulative
probability of 1.0. The CDF clearly shows that the level of regulatory concern chosen for this
example (1E-06) falls between the 90™ and 95™ percentiles of the risk distribution.
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3.2 ROLE OF THE SENSITIVITY ANALYSIS

Prior to conducting a PRA, it is worthwhile to review several points pertaining to the sensitivity
analysis. As shown in Chapter 2 (Figures 2-1 and 2-2), sensitivity analysis can play an important role in
decision making at each tier of the tiered process. Beginning with Tier 1, a point estimate for risk should
be calculated prior to conducting a PRA. Based on the results of the point estimate, the risk assessor and
risk decision makers should determine whether a probabilistic analysis will offer additional benefit. One
factor in this decision may be the results of a sensitivity analysis. A primary objective of the sensitivity
analysis is to determine which variables and pathways most strongly influence the risk estimate. At
many Superfund sites, an estimate of cumulative risk considers contamination in multiple media, moving
through multiple pathways and interacting with a number of receptors. Depending on the complexity of
the site, and the modeling approaches, a risk assessment may involve one exposure pathway and few
variables, or multiple pathways with many variables (e.g., multimedia fate and transport models).
However, resources and time are often limited. The sensitivity analysis is invaluable in focusing these
limited resources on the most influential variables and pathways.

Several methods for conducting sensitivity analysis are described in Appendix A. It is important
to note that when a sensitivity analysis is performed and the major variables are identified, this does not
mean that the less influential pathways and variables should be eliminated from the risk assessment. It
means that because they are not major contributors to the variability or uncertainty in risk, they can be
described with point estimates without affecting the risk management decision. If distributions are
readily available for these less influential variables, one may use distributions. The key goal is to provide
a comprehensive risk characterization that is scientifically credible and sufficient for risk decision
making. The time and effort required to achieve various levels of complexity should be weighed against
the value of the information provided to the risk managers.

Additionally, if a variable is specified as influential in the sensitivity analysis, this does not
automatically mean that a distribution has to be developed for this variable. If the risk assessor feels that
data are simply not sufficient from which to develop a distribution, then a plausible point estimate can be
used. The risk assessor should be aware of a possible problem arising from using point estimates in the
absence of data adequate to support a distribution. If a variable has the potential to significantly impact
the risk outcome, and a very high-end or low-end point estimate is used in the PRA, this has the potential
to right-shift or left-shift the final distribution of risk. Even though there might not be enough data to
develop a distribution of variability for an influential variable, it would be prudent to communicate the
importance of this data gap to the risk decision makers, and perhaps run multiple simulations with several
plausible input distributions for that variable. Communication of this uncertainty may persuade the risk
decision makers to collect additional data to better define the variable.
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3.3 EXPOSURE POINT CONCENTRATION TERM

A brief discussion of the concentration term is provided below. A more complete discussion of
the concentration term in PRA is provided in Appendix C. The reader is also referred to Chapter 5 on
development of PRGs.

The major source of uncertainty in Superfund risk assessments is often incomplete knowledge of
the concentration of one or more chemicals in various exposure media. In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,

(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s).

Contaminant concentrations contacted by a receptor are likely to vary depending on the spatial
variability of contamination and the movements of the receptor. Different individuals may be exposed to
different concentrations based on inter-individual variability in activity patterns. If information regarding
activity patterns is unavailable, receptors are typically assumed to exhibit random movement such that
there is an equal probability of contacting any area within the exposure unit (EU). An EU is defined as
the geographical area in which a receptor moves and contacts contaminated medium during the period of
the exposure duration. In addition, in Superfund risk assessments, the toxicity criteria are often based on
health effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily
intake over a period of 30 years). Hence, the most appropriate expression for the concentration term, for
the majority of risk assessments, is one that characterizes the long-term average exposure point
concentration within the EU.

= The most appropriate expression of the exposure point concentration term
for chronic exposure will characterize the long-term average concentration
experienced by a receptor within the exposure unit.

In point estimate risk assessments, the exposure point concentration term is usually calculated as
the 95% upper confidence limit (95% UCL) of the arithmetic mean because of the uncertainty associated
with estimating the true (i.e., population) mean concentration at a site. If the sampling density is sparse
relative to the size of the EU, the uncertainty may be high due to the relatively small number of
measurements available to estimate the mean concentration within the EU. The decision to use the upper
confidence limit to define the concentration term introduces a measure of protectiveness by reducing the
chance of underestimating the mean. Although there will be situations in which modeling variability in
concentration will be the appropriate choice (e.g., non-random movement within an EU, acute exposure
events, migration of groundwater contaminant plume, migration of fish, etc.), in most cases,
characterization of the concentration term will focus on uncertainty. Appendix C provides a more
complete discussion on characterizing both variability and uncertainty in the concentration term.

Table 3-1 summarizes a number of appropriate methods for characterizing uncertainty in the parameter of
an exposure variable, such as the arithmetic mean of the concentration term.
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34 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES

Uncertainty is described as a lack of knowledge about factors affecting exposure or risk. To
evaluate regulatory options, risk assessors are expected to translate the available evidence, however
tentative, into a probability of occurrence of an adverse health effect. Data from a sample or surrogate
population are used to develop estimates of exposure and risk in a specific target population (see
Section 3.1.4 and Appendix B, Section B.3.1). This extrapolation requires assumptions and inferences
that have inherent strengths and limitations, and may bias the outcome of the risk estimate. For example,
a common assumption in risk assessments for carcinogens is that a contaminant concentration within the
boundaries of a hazardous waste site represents the concentration that a receptor is exposed to throughout
the period of exposure, with the corresponding dose averaged over the course of a lifetime. This
assumption may be conservative (i.e., result in overestimation of exposure) if it is unlikely that receptors
will be exposed at the hazardous waste site for the entire exposure duration. It is incumbent on the risk
assessor to clearly present the rationale for the assumptions used in a risk assessment, as well as their
implications and limitations.

U.S. EPA guidance, including the Exposure Assessment Guidelines (U.S. EPA, 1992a), Exposure
Factors Handbook (U.S. EPA, 1997a,b,c), and Guiding Principles for Monte Carlo Analysis (U.S. EPA,
1997d) have classified uncertainty in exposure assessment into three broad categories:

(1) Parameter uncertainty - uncertainty in values used to estimate variables of a model,

(2) Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended
use; and

(3) Scenario uncertainty - uncertainty regarding missing or incomplete information to fully
define exposure.

Each source of uncertainty is described in detail below, along with strategies for addressing them in
PRA.

3.4.1 PARAMETER UNCERTAINTY

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified
in site-specific risk assessments at hazardous waste sites. Parameter uncertainty can occur in each step of
the risk assessment process from data collection and evaluation, to the assessment of exposure and
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection
process, imprecision in the analytical measurements, and extrapolation from surrogate measures to
represent the parameter of interest. For example, soil data collected only from the areas of highest
contamination, rather than the entire area that a receptor is expected to come into contact, will result in a
biased estimate of exposure.

In general, parameter uncertainty can be quantified at any stage of the tiered process, including
point estimate analysis (Tier 1), one-dimensional Monte Carlo analysis (1-D MCA) (Tier 2), and two-
dimensional Monte Carlo analysis (2-D MCA) (Tier 3). In the point estimate approach, parameter
uncertainty may be addressed in a qualitative manner for most variables. For example, the uncertainty
section of a point estimate risk assessment document might state that an absorption fraction of 100% was
used to represent the amount of contaminant in soil absorbed from the gastrointestinal (GI) tract, and as a
result, the risk estimate may overestimate actual risk. In addition, a sensitivity analysis may be
performed, wherein one input variable at a time is changed, while leaving the others constant, to examine
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the effect on the outcome. In the case of absorption from the GI tract, different plausible estimates of the
high-end, or RME absorption fraction might be used as inputs to the risk equation. The differences in the
risk estimates would reflect uncertainty in the RME absorption fraction.

Quantitative approaches for characterizing parameter uncertainty in exposure variables in a
Monte Carlo simulation are summarized in Table 3-1. If uncertainty in only a few parameter values is of
interest, multiple 1-D MCA simulations can yield the same results as a 2-D MCA simulation, but without
the time and effort of a 2-D MCA. An example illustrating this concept is given in Table 3-2. With
multiple 1-D MCA simulations, variability is characterized in one or more variables using probability
distributions for variability (PDFv’s), and uncertainty in a parameter is characterized with a series of
different point estimates from a probability distribution for uncertainty (PDFu) (e.g., 95% lower
confidence limit LCL [95% LCL], sample mean, and 95% UCL). In a 2-D MCA simulation, variability
is characterized in one or more variables using PDFv’s, and uncertainty in one or more parameters is
characterized with PDFu’s. With both approaches, the influence of the parameter uncertainty can be
presented as a credible interval or confidence interval (CI) around the risk distribution, depending on
how the PDFu’s are defined. When only a few sources of parameter uncertainty are quantified, multiple
1-D MCA simulations are preferred over a 2-D MCA because the approach is easier to use and
communicate. However, if the goal is to explore the effect that many sources of parameter uncertainty
may have on the risk estimates simultaneously, a 2-D MCA is preferred. Iterative 1-D MCA simulations
with different combinations of confidence limits may be impractical.

Table 3-1. Methods for Characterizing Parameter Uncertainty with Monte Carlo Simulations.

Approach Example of Model Input Method Example of Model Output
Single Point * 95% UCL 1-D MCA |PDFv' for risk, calculated using the 95%
Estimate UCL for one parameter.

Multiple Point * 95% LCL 1-D MCA |Three PDFv’s for risk, representing the
Estimates * sample mean 90% CI for each percentile of the risk
* 95% UCL distribution.? The 90% CI only accounts

for uncertainty in a single parameter (not
multiple parameters).

Parametric PDFu for the mean based on the 2-D MCA |One PDFv for risk with confidence
PDFu' sampling distribution, derived from intervals at each percentile of the risk
a Student’s ¢-distribution. distribution. The CI reflects uncertainty in

one or more parameters.

Non-parametric [PDFu for the mean based on 2-D MCA |[Same as parametric probability distribution
PDFu bootstrap resampling methods. for uncertainty.

'Probability distribution for uncertainty (PDFu) and probability distribution for variability (PDFv).

*The 95% UCL for the concentration term represents a 1-sided confidence interval (CI), meaning there is a 95% probability that
the value is greater than or equal to the mean. Similarly, the 95% LCL would represent the 1-sided CI in which there is a 95%
probability that the value is /ess than or equal to the mean. Both values are percentiles on the probability distribution for
uncertainty (PDFu), also called the sampling distribution for the mean. Together, the 95% LCL and 95% UCL are equal to the
2-sided 90% confidence interval only for cases in which the PDFu is symmetric. For example, the sampling distribution for the
arithmetic mean of a sample from a normal distribution with an unknown variance is described with the symmetric Student’s
t-distribution, whereas the PDFu for the mean of a lognormal distribution is asymmetric. In order to compare the results of
multiple 1-D MCA simulations and a 2-D MCA simulation, the same methodology should be employed to define the PDFu and
the corresponding confidence limits.
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It is generally incorrect to combine a PDFu for one parameter (e.g., mean of the concentration
term) with one or more PDFV’s in other exposure factors when conducting a 1-D MCA for variability.
However, distributions for uncertainty and variability may be appropriately combined in a 2-D MCA. As
discussed in Appendix D, with 2-D MCA, a clear distinction should be made between probability
distributions that characterize variability (PDFv) and parameter uncertainty (PDFu). A 2-D MCA
propagates the uncertainty and variability distributions separately through an exposure model, thereby
making it possible to evaluate the effect of each on the risk estimates.

Example: Comparison of Multiple Point Estimates of Uncertainty in 1-D MCA, and Distributions of
Uncertainty in 2-D MCA

Table 3-2 illustrates an application of the approaches presented in Table 3-1 for quantifying
variability and parameter uncertainty. This is a hypothetical example, and no attempt was made to use
standard default assumptions for exposure variables. Two sources of variability are quantified: (1) inter-
individual variability in exposure frequency (EF), characterized by a triangular distribution, and (2) inter-
individual variability in exposure duration (ED), characterized by a truncated lognormal distribution. In
addition, two sources of uncertainty are presented: (1) a point estimate for soil and dust ingestion rate,
intended to characterize the RME; and (2) an upper truncation limit of the lognormal distribution for ED,
intended to represent a plausible upper bound for the exposed population. Methods for quantifying these
sources of uncertainty are discussed below. Additional sources of uncertainty may also have been
explored. For example, the choice of a triangular distribution for a PDFv may be provocative for some
risk assessors, since there are few cases in which empirical data suggest a random sample is from a
triangular distribution. Nevertheless, triangular distributions may be considered rough, or “preliminary”
distributions (see Chapter 2 and Appendix B, Section B.2) for cases when the available information
supports a plausible range and central tendency.

The choice of distributions is a potential source of uncertainty that can be explored by rerunning
simulations with each alternative, plausible choice, and examining the effect on the RME risk.
Simulations with preliminary simulations may yield at least three different outcomes. First, this type of
sensitivity analysis can help guide efforts to improve characterizations of variability for selected
variables that have the greatest affect on the risk estimates. Second, results may provide justification to
exit the tiered process without continuing with additional Monte Carlo simulations since further effort
would be unlikely to change the risk management decision. Finally, if the major sources of uncertainty
can be clearly identified, a subset of the less sensitive variables may be defined by point estimates
without significantly reducing the uncertainty in the risk estimates.

Parameter uncertainty can be quantified for both point estimates and PDFv’s. In this example,
both types of inputs (i.e., point estimates and PDFv’s) are presented as sources of parameter uncertainty:
the RME point estimate for soil and dust ingestion rate (IRsd), and the upper truncation limit on a PDFv
for ED. For IRsd, assume that three different studies provide equally plausible values for the RME: 50,
100, and 200 mg/day. A uniform PDFu is specified to characterize this range of plausible values. For
ED, assume that the maximum value reported from a site-specific survey was 26 years, but surrogate data
for other populations suggest the maximum may be as long as 40 years. A uniform PDFu is specified to
characterize this range of plausible values as well.

In Cases 1-3, the impact of uncertainty in IRsd and ED was evaluated using a series 1-D MCA
simulations. Inputs for uncertain parameters associated with IRsd and ED in Case 1, 2, and 3 represent
the minimum, central tendency, and maximum values, respectively. Each simulation yields a different
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risk distribution based on different combinations of point estimates for parameters. Although a PDFu
was specified for IRsd, it would have been incorrect to combine the PDFu with the PDFv’s for EF and
ED in a 1-D MCA because the result would have been a single distribution of risk that co-mingled
uncertainty and variability.

In Case 4, a single 2-D MCA simulation was run using the PDFu’s for uncertainty and the
PDFv’s for variability. By propagating variability and uncertainty separately, the 2-D MCA yields a
series of distributions of risk, from which credible intervals can be calculated for each percentile of the
CDF.

_CxIRxGFxEFxED

Risk % CISF,.
BW x AT i
Table 3-2. Example of 1-D MCA and 2-D MCA.
Type of 1-D MCA 2-D MCA
Variable Input
Case 1 Case 2 Case 3 Case 4
C (mg/kg) pt estimate 500 500 500 500
IRsd pt estimate 50 100 200 see below
(mg/day)
PDFu for -- -- -- uniform (50, 200)*
pt estimate
CF (kg/mg) pt estimate 1E-06 1E-06 1E-06 1E-06
EF PDFv triangular triangular triangular triangular
(days/year) min =200 min =200 min =200 min =200
mode =250 mode =250 mode =250 mode =250
max = 350 max = 350 max = 350 max = 350
ED (years) PDFv T-lognormal T-lognormal T-lognormal T-lognormal
mean =9 mean = 9 mean = 9 mean =9
stdv =10 stdv =10 stdv =10 stdev =10
max = 26 max = 33 max = 40 max = PDFu (see below)
PDFu for -- -- -- max ~ uniform (26, 40)°
parameter of
PDFv
BW (kg) pt estimate 70 70 70 70
AT (days) pt estimate 25550 25550 25550 25550
CSF pt estimate 1E-01 1E-01 1E-01 1E-01
(mg/kg-day)”!

*Uncertainty in the RME point estimate, defined by a uniform distribution with parameters (minimum, maximum).
"Uncertainty in the upper truncation limit of the lognormal distribution, defined by a PDFv with parameters (mean, standard
deviation, maximum) and a PDFu for the maximum defined by a uniform distribution with parameters (minimum,
maximum).
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Monte Carlo Simulation Results

Figures 3-3 and 3-4 illustrate CDFs for risk produced from Monte Carlo simulations using
Crystal Ball® 2000. The 1-D MCA simulations (Figure 3-3) were run with 10,000 iterations and Latin
Hypercube sampling. The 2-D MCA simulation (Figure 3-4) was run with 250 iterations of the outer
loop (uncertainty) and 2,000 iterations of the inner loop (variability). Details regarding 2-D MCA
simulation are given in Appendix D.

Figure 3-3 shows CDFs for risk based on three simulations of a 1-D MCA simulation. Each
simulation used a different combination of plausible estimates of the RME value for IRsd and the upper
truncation limit for ED, as discussed above. The results provide a bounding estimate on the risk
distribution given these two sources of uncertainty. The 95" percentile risk, highlighted as an example of
the RME risk estimate, may range from approximately 7E-06 to 3.5E-05.

Figure 3-4 shows a single CDF for risk, representing the central tendency risk distribution. This
CDF was derived by simulating uncertainty in the risk distribution using 2-D MCA. For this example,
the 2-D MCA yields 250 simulations of the risk distributions for variability, so that there are
250 plausible estimates of each percentile of the risk distribution. In practice, more than 250 simulations
may be needed to adequately quantify uncertainty in the risk distribution. Results of a 2-D MCA can be
presented as probability distributions of uncertainty, or box-and-whisker plots of uncertainty at selected
percentiles of the risk distributions. Figure 3-4 shows the central tendency (50" percentile) estimate of
uncertainty for the entire CDF of risk. In addition, a box-and-whisker plot is shown at the 95" percentile
of the CDF. Selected statistics for the box-and-whisker plot are included in a text box on the graphic
(i.e., minimum; 5®, 50", and 95" percentiles, and maximum). The 90% credible interval is given by the
5™ and 95" percentiles. For this example, the 90% credible interval for the 95" percentile of the risk
distribution is: [9.1E-06, 3.1E-05].

Figures 3-3 and 3-4 demonstrate that the two approaches (i.e., multiple 1-D MCA and 2-D MCA)
can yield the same results. However, when there are numerous sources of uncertainty, 2-D MCA offers
at least two advantages over multiple 1-D MCA simulations: (1) 2-D MCA allows the multiple sources of
uncertainty to be included simultaneously so the approach is more efficient than a series of 1-D MCA
simulations; and (2) multiple 1-D MCA simulations yield multiple estimates of the RME risk, but it is not
possible to characterize the uncertainty in the RME risk in quantitative terms; a 2-D MCA yields a PDFu
for RME risk, which allows for statements regarding the level of certainty that the RME risk is above or
below a risk level of concern.

The 95" percentile is a focus of this example because it is a recommended starting point for
determining the risk corresponding to the RME. Chapter 7 provides guidance to the risk decision makers
on choosing an appropriate percentile (on a distribution of variability) within the RME risk range (90" to
99.9" percentiles). The chapter also includes a qualitative consideration of the uncertainty or confidence
surrounding a risk estimate in the decision-making process.
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3.4.2 SCENARIO AND MODEL UNCERTAINTY

All models are simplified representations of complex biological and physical processes. As
such, they, and the scenarios to which they are applied, may introduce a significant source of uncertainty
into an exposure and risk estimate. Models may exclude important variables or important pathways of
exposure, ignore interactions between inputs, use surrogate variables that are different from the target
variables, or they may be designed for specific scenarios and not others. As a result, a model may not
adequately represent all aspects of the phenomena it was intended to approximate or it may not be
appropriate to predict outcomes for a different type of scenario. For example, a model intended to
estimate risk from continuous, steady state exposures to a contaminant may not be appropriate or
applicable for estimating risk from acute or subchronic exposure events. In any risk assessment, it is
important to understand the original intent of a model, the assumptions being made in a model, what the
parameters represent, and how they interact. Based on this knowledge, one can begin to understand how
representative and applicable (or inapplicable) a model may be to a given scenario. If multiple models
exist that can be applied to a given scenario, it may be useful to compare and contrast results in order to
understand the potential implications of the differences. The use of multiple models, or models with
varying levels of sophistication, may provide valuable information on the uncertainty introduced into a
risk estimate as the result of model or scenario uncertainty. The collection of measured data as a reality
check against a given parameter or the predicted model outcome (such as the collection of vegetable and
fruit contaminant data to compare against modeled uptake into plants) is also useful in attempting to
reduce or at least gain a better understanding of model and scenario uncertainty.

3.5 ExaAMPLE OF PRA FOR HUMAN HEALTH

The following hypothetical example provides a conceptual walk-through of the tiered approach
for PRA in Superfund risk assessment. The example begins with a baseline human health point estimate
risk assessment (Tier 1) and moves to Tier 2, in which multiple iterations of a 1-D MCA are run using
default and site-specific assumptions for input distributions. The general concepts associated with the
tiered approach are discussed in Chapter 2, and a similar example for ecological risk assessment is given
in Chapter 4. The 1-D MCA results are based on simulations with Crystal Bal/® 2000 using
10,000 iterations and Latin Hypercube sampling. These settings were sufficient to obtain stability (i.e.,
<1% difference) in the 95% percentile risk estimate. The example is presented in Exhibit 3-5. Tables
and figures supporting the example are given immediately following the exhibit.
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EXHIBIT 3-5
USING THE TIERED PROCESS FOR PRA
HYPOTHETICAL CASE STUDY FOR HUMAN HEALTH RISK ASSESSMENT

RI Planning/Scop mg/Problem FormulationData Collection

Site Deseription: Former federal facilitsy

Site Size: 100 acres (5 acres within spill area (I54); 95 acres outeide spill area (O3 4))
Stakeholders: Refuge ermploees, ervironrnental activists, ete.

Land Use: Futare wildlife refuge

Receptors: Fubure wildlife refuge workers (1e., omithologists and fisherybiologists)
Sarnpling Data: n=35 swface soil sarmples (see Figure 3-5 for sample locations)
Cherrdeal of Coneern: Chencl

Cherdcal Properties: Nomwvolatile
Toxicological Properties: Carcinogern: CSF
Honcareinogenic health data ave lacking
Risk Level of Concerr: 1E-04 for cancer

and C5F

deimd

= 55E-02, CSF,,= 2.73E-02,

¥

Tier 1 Point Estimate | - Baseline Risk Assessment

Exposure Unit: (zee Fizure 3-5) omithologist (exposed in O5 A) and fisheryhiologist
(exposed v IS4

Exposure Pathwaye: Ingestion of soilidust; inhalation of fugitie dust, denral sheorption
Concenfration Terra: 953% UCL for arithtoetic rean (Tahkle 3-3)

Rigk Equations: Exlabit 3-6

Exposure Paratneters: Table 3-4

Results: Tahle 3-5

¥

@ Is the Information Sufficient for Risk Management Decisions?

Sensitivity Snalyeis | IdentifiyData | Commamication |  PRA& work | ot
Diiscussion GapsMeeds | With Stakeholders | Discussion | FPlanming T

Stakeholder raee fing iz corerened —point estivnate results ave discuzsed and ideas are exchanged

as follows:

= Risk estitnates are expected to be conservative due to the use of standard defanlt
exposure pararneters, but are the defaults re presentative?

= Stakeholders are concerned about risk to workers and about the consecue nee s of
rernediation (e 2., negative impacts on habitat and potertial job losses).

= Stakeholders are concerned about the relevance of aome nonsite-specific expomure
vatiahles (e 2., exposure duration), but are not sure which varnahles fo rrestigate
further (1., which is the most influential? ).

= Besults of the sensitrvity analysis from point estimate risk assessment cannot
identify where the high end risk estimate fallson the risk distdution.

»  There is sufficient inforrmation (e.g., arithenetic mean, standard deviation,
petcentiles) for some of the exposme variables to develop indtial probability
distributions to characterize wariability.

l (contirmed on next page)
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(contirned)

Is the Information Sufficient for Risk Management Decisions? (continued)

Inade 3l Area(I3A) Chtside Spall Area (O5A)
F VT SRStk 1 SO b e - RME sisk estimate: 6.6E-035 (Table 3-5)
RME petcent corfribution to risk by o ;
pathew ay: Table 3-3 (inhal stion adds a » RME percent cortritntionto risk by
minimal conteitnition to totsl rigs ez, pathwrasr Table 3-5
=1%) *  RME tisk estimate iz less than the level
EME rigk estimateis greater than the lewvel of conwern(1E-04) by afartor of 0.7
DfCDﬂEEmI:].E-D"—U hjr&fﬂﬂt-l:li’ of 2.4 - FME tisk estimate iz saufficlent for risl
EME risk estimateis close to the lewel of managemett decisions because point
cotwerty and therefore informati on oay not ; g
v sufficient estimmate resilts are protective

Mo Yes
¥
Refine Point Estimate Analysis
Only! Compleie
RIFS Process

Mo firther changes to the point estim e are possible without more data.
Ieformation from a PRA mayinfluence the sk managemernt decision by
- [dentifying where on the risk distribotion the ridk estimate falls,

- Identifying data gaps hrough amore advanced sensiti vty analyais(ie,
whi ch watiabl es woul d benefit from additionsl data collection due to their
influence ot the risk estimate?)

Mo

¥

Tier 2 Probabilistic Estimate |— Conduct a Preliminary 1-I) MCA for Variahility

Exposwe Unit: [nside 3pil Area (Fishery biologist) (see Figore 3-5)

Exposwe Pattowrays: Soil ingestion and dermoal absorpt o, inhalation e cdluded (1% of total rigk)
C oncentration Termm: 359 UCL on arithmetic mean I34 (see Table 3-3)

Probatilitsy Distriboati ong and Parameters: See Table3-6

Results: Jee Table 3.7

(contirned on next page)
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([ otutivsed)

@ Is the Information Sufficient for Rislkk Management Decisions?

Seraitivity Analysis | Tdertifir Data | Communication PRA Wotk Hﬁ&iﬁiﬂl
Diizcussl on Gapelleeds | WithStakeholders | Discussion Platwitz Data

S takebiol der meeeting is corrverned—1-10 LT A reqits are discussed andideas are exchanged:
= Sensitivity atalysis from the 1-DMCA demonstrates that exposure duration, soil
itugestion tate, hody weight, and adherence factor ate the most sensitive variables (zee
Figwe 3-6).
= Additional data collection efforts for exposure duration data specific to fishery
hiclogistsis feasitle

= Preliminay FRA suggests that the Tier 1 RME poirt estimate rigs in [34 (e, 24E-04)
cotrespotuds with the 99 per cerdile of the risk distritngion
*  PRA results show that the RIWE risk range (e, 90% t0 99 9% percentile) is 1 E-04 to 4E-0d.

= Information from a preliminaty 1-D WCA may not be sufficient for a sk management

decizion as the RME tisk range is suffi ciertly close to the level of concern to watrart Sarther
irrve st gati o

Mo

Refined PRA
Analysis Only?

= BRME risk range is aafficiently close to the lewel of coticern to warrarnt
further irnve st gati on

= DMorerigorous process fior fitting di stittions to selected varidhles (e.g,
IF_sod, 34 skin et may influence risk managemert decisiory, andlevel
of eff ot is reasonable; therefore proceed with a refined 1-D MC A

Yes
(oottitme d o next page)
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Yes
([ cotitiroaed)

Tier 2 Refined PRA| - Conduct Refined 1-D MCA and Refined Point Estimate

= Exposwe Unit: Fisherybiologist-ins de spill avea (ISA) (zee Figare 3-3)
= Exposwe Palwrays: Ingesion of sod and dust, and dermal absorption
= Concertration Term: 95% UCL on arittenetic mean

= Probability DistringionaParameters: see Table 3-2 for sample data and sumimary statistics,
expomte dhrati o defined by lognormal PDF Carithwetic mearel 4, 3D=0 4 wpper

truncati oty of 44 years)

*  Resits: see Tahle 3-9
(@ Is the Information Sufficient for Risk Managerment Decisions?

Setsitivty Analysis | [dentifyy Data | © ommond cation PRA Wtk ﬂcd;il:iemal
Discussion GapsMeeds | With Stakeholders | Discussion | Plarnming Dat;n

Stakeholders meetingis corrvened. Refined 1-D IIC A results are discussed and ideas are
exchatniged as follows:

» Bensitivity analysis from refined 1-D MCA indicates that the vse of site-specific data
did not sigrificardly alter the relative ranking or magribade of rank correlations for
irgoat variables (similar graphic asFiguare 3-6).

= Refined 1-D MCA remits suggest that the refined RMWE point estitmate risk
coryesponds with the 99% percentile of the risk distritntion(Takle 3-9,

= Refined 1-D MCA resits show that the RWE range (i e, 90%t0 99 9% percentil€) is
1 E-04 to 3E-04, with95% percentile of 2.1 E-04.

= Information from refined 1-D MO A iz sufficient for risk managem ent decis on
because the RIVE rigk (05t percertile) is ahove the lewel of coteern of 1E-04 using
site specific exposure duration dats, and additional data collection on IR soil term is
not warrarted. Complete BLES process.

Yes

Complete RLFS Process

= Ztakeholders and FPL decide that the best remedial
alterriative istoremowve suface sod inthe 5 acre spill
atea atwd covet the refuge area with clean fill before
be girming refiige cofstract on.
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o

Exposure Unit

Boundary
Soil Sample

Location

—— Hot Spot

Boundary

Figure 3-5. Site map for future wildlife refuge showing boundaries for the exposure
unit and potential hotspot, as well as sampling locations (n=35). Sample numbers
correspond with concentration data given in Table 3-3.

Table 3-3. Concentrations in Surface Soil (mg/kg).

'The 95% UCL was estimated using the Land method (see Appendix C).

Chitzide Spill Avea (n=200 Tnaide Spill Area(n=15)
1088 305 1934 o0 Statictics | Oniside Spill Avea  |Inside Spill Area
Lt 8T 412 DE5 Iilean 1247 37
3045 T6E0 45 145 Standard Devdation 1121 53
14 148 1121 158 05, UCL 2303 2444
3704 1028 20 21296
a5 a37 2.3
45 1295 &7
3&8Y 1238 2E
1438 1006 57
2502 253 LE
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Soil Ingestion

Total Risk

Where:

EXHIBIT 3-6

RiSK EQUATIONS

Dermal Absorption

Inhalation of Fugitive Dust

Risk = Cs x CF xIRsx FIx EF X ED x Oral CSF
BW x AT

Risk = Cs xCF x SA x AF x ABS x EF X ED x Dermal-Adjusted CSF
BW x AT

Risk = Cs x 1/PEF xIRax ET x EF X ED x Inhalation CSF
BW x AT

= Sum of risks from each exposure pathway (soil + dermal + inhalation)

Cs = Concentration of ChemX in soil (mg/kg)

IRs = Soil ingestion rate for receptor (mg/day)

FI = Fraction ingested from contaminated source (unitless)
CF = Conversion factor (1E-06 kg/mg)

SA = Skin surface area available for exposure (cm*event)
AF = Soil to skin adherence factor for ChemX (mg/cm?)
ABS = Absorption factor for ChemX (unitless)

[Ra = Inhalation rate for receptor (m*/hr)

PEF = Soil-to-air particulate emission factor (kg/m®)

ET = Exposure time for receptor (hours/day)

EF = Exposure frequency for receptor (days/year)

ED = Exposure duration for receptor (years)

BW = Body weight of receptor (kg)

AT = Averaging time (years)

CSF = Cancer slope factor (oral, dermal, inhalation) (mg/kg-day)_1
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Table 3-4. Exposure Parameters used in Point Estimate Analysis.

Exposure CTE RME Units Reference

Variable Value Value

IRs 50 100 mg/day CTE: U.S. EPA, 1997a, p. 4-25
RME: U.S. EPA, 2001

FI 0.5 1 unitless Site-specific

CF 1E-06 1E-06 kg/mg Constant

SA 3300 3300 cm?/event U.S. EPA, 2001, 50 percentile value for all adult
workers—exposure to face, forearms, and hands

AF 0.1 0.2 rng/crn2 CTE: U.S. EPA, 1998; Table 3.3, value for
gardeners
RME: U.S. EPA, 2001

ABS 0.1 0.1 unitless U.S. EPA, 1998, default for semi-volatile organic
compounds (SVOCs)

IRa 1.3 3.3 m/hr U.S. EPA, 1997a, p. 5-24, outdoor worker hourly
average: mean and upper percentile

PEF 1.36E+09 1.36E+09 kg/m? U.S. EPA, 2001

ET 8 8 hours/day Site-specific

EF 200 225 days/year CTE: Site-specific assumption
RME: U.S. EPA, 2001

ED 5 25 years CTE: U.S. EPA, 1993,p. 6
RME: U.S. EPA, 2001

BW 70 70 kg U.S. EPA, 1993,p.7

AT 25550 25550 days constant

CTE = central tendency exposure; RME = reasonable maximum exposure.

Table 3-5. Point Estimate Risks and Exposure Pathway Contributions.

Risk Estimate

by Exposure Pathway

Inside Spill Area (n = 15)

Outside Spill Area (n =20)

CTE

RME

CTE

RME

Soil Ingestion

6.5E-06 (43 %)

1.5E-04 (60 %)

1.7E-06 (43 %)

4.0E-05 (60 %)

Dermal Absorption

8.6E-06 (57 %)

9.6E-05 (40 %)

2.3E-06 (57 %)

2.6E-05 (40 %)

Inhalation

9.9E-10 (< 1 %)

1.4E-08 (< 1 %)

2.7E-10 (< 1 %)

3.8E-09 (< 1 %)

Total Risk

1.5E-05

2.4E-04

4.1E-06

6.6E-05

Example of % contribution: % Soil for RME risk inside spill area = (Soil risk / Total risk) x 100%
= (1.46E-04 / 2.42E-04) x 100% = 60%
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Table 3-6. Input Distributions for Exposure Variables used in 1-D MCA for Variability.

Exposure Distribution Parameters> Units Reference

Variable! Type

IR soil Triangular 0, 50, 100 mg/day U.S. EPA, 1993, 2001

SA_skin® Lognormal 18150,37.4 | cm? U.S. EPA, 1997a, Table 6-4
(Total male/female body surface area)

Absorption Uniform 0.1,0.2 mg/cm2 U.S. EPA, 2001; minimum truncation limit is

Fraction professional judgment

IR air Lognormal 1.68,0.72 m*/hour U.S. EPA, 1996, p.5-10

EF Triangular 200, 225,250 | days U.S. EPA, 2001; truncation limits are
professional judgment

ED Lognormal4 11.7, 7.0 years U.S. EPA, 1997b, Table 15-161 and U.S. EPA,
2001

(Mean value is based on average of total median
tenure for professional specialty and farming,
forestry, and fishing)

Truncated 14.0, 9.4, years Site-specific survey data, used in refined
Lognormal® 44.0 1-D MCA
BW Lognormal 71.75,14.2 kg U.S. EPA, 1997a, Tables 7-4 and 7-5;
(Combined male/female body weight
distributions)

'All other exposure parameters are inputted as point estimates (see Table 3-4).

*Parameters for lognormal PDF are X ~ Lognormal (arithmetic mean, arithmetic standard deviation) unless otherwise stated.
Parameters for triangular PDF are X ~ Triangular (minimum, mode, maximum). Parameters for uniform PDF are X ~ Uniform
(minimum, maximum).

*A point estimate of 0.189 was used to adjust the surface area skin (SA_skin) distribution, which is based on total body surface
area, to account for skin exposures limited to face, forearms, and hands (U.S. EPA, 1997a, Vol. ).

*Parameters for preliminary lognormal PDF for ED were converted from a geometric mean of 10 and a 95™ percentile of 25.
Parameters for site-specific lognormal PDF for ED are arithmetic mean, standard deviation, and upper truncation limit.

Table 3-7. 1-D MCA Risk Estimates using Preliminary Inputs.

Cumulative Spill Area Risk
Percentile
50th 5.7E-05
90th 1.3E-04
95th 1.6E-04
99th 2.4E-04
99.9th 3.9E-04
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ED 1086

IR_soil []0.30

-0.28 BW

AF [045
EF [1]0.08

IR_air [0.01

-1.0 05 00 0.5 10

Rank Correlation

Figure 3-6. Results of sensitivity analysis for preliminary 1-D MCA (Tier 2)
showing the Spearman Rank correlations (see Appendix A and B) between input
variables and risk estimates.

Table 3-8. Exposure Duration Survey Results.

Survey Results (years) Summary Statistics
24.9 20.3 172 | n 20
8.4 11.7 6.5 | min 3.0
3.0 4.7 16.5 | max 44.2
6.8 20.9 6.0 | arithmetic mean 14.0
18.5 10.6 18.8 | standard dev 9.4
9.1 12.7 11.7 | median/GM 11.7
7.2 44.2 GSD 1.8

Table 3-9. Refined Point Estimate and 1-D M CA Risk Estimates.

Cumulative Percentile Spill Area Risk
Refined RME 3 1E-04
Point Estimate

S 6.7E-05
90th 1.6E-04
95th 2.1E-04
99th 3.2E-04

99.9th 5.3E-04
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CHAPTER 4

PROBABILISTIC ANALYSIS IN ECOLOGICAL RISK ASSESSMENT

4.1 INTRODUCTION
4.1.1 BASIC APPROACH FOR PERFORMING ECOLOGICAL RISK ASSESSMENTS

Ecological risk assessment (ERA) is defined by the 1997 Environmental Protection Agency’s
(EPA) Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting
Ecological Risk Assessments (ERAGS) (U.S. EPA, 1997a) as an evaluation of the “likelihood that adverse
ecological effects are occurring or may occur as a result of exposure to one or more stressors”. The
ERAGS document is generally similar to, and consistent with the earlier framework guidance and
approach (U.S. EPA, 1992a) which was expanded upon and superceded by the Guidelines for Ecological
Risk Assessment (U.S. EPA, 1998). The EPA has developed extensive technical and policy guidance on
how ERAs should be planned and performed (see Exhibit 4-2). In general, this process has three main
elements, as shown in Figure 4-1:

Ecological Risk Assessment =

Discussion ]
Betweenthe | - PROBLEM FORMULATION E
Risk & ssessor + LI
and — — "E

Rigk Manager .
(Plarming) E‘-
N . =

A Char acterizati on Characterization Ei

L of of + » o

g Exposae Ecologieal §.

I Effects =

5 ®

4

v IR E

: g

| P~ '5:

RISE CHARACTERIZATION u%

v

Discussion Between the Risk
& gsessor and Rigk Manager

(Fenits)

{

Risl I anagem ent

Figure 4-1. Ecological Risk Assessment Framework (U.S. EPA, 1992a)
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Problem Formulation provides a foundation for the entire risk assessment. This element
includes the specification of risk management goals and assessment endpoints, the development
of a site conceptual model with exposure pathways and receptors, and the development of a
sampling and analysis plan to collect data on exposures and measures of effects that are needed
to support the ERA. In general, problem formulation serves as the foundation of an ERA and
often is an iterative process, whereby substantial re-evaluation may occur as new information and
data are collected during the site investigations. Collection of data in subsequent iterations is
often triggered by identification of major data gaps and uncertainties in the risk characterization
that prevent confident decision making by risk managers.

Analysis includes two principal measurement steps that are based upon the problem formulation:
Assessment of exposures and assessment of ecological effects. Assessment of exposures
includes the identification of stressors at the site that may affect ecological receptors, a
characterization of the spatial and/or temporal pattern of the stressors in the environment at the
site, and an analysis of the level of contact or co-occurrence between the stressors and the
ecological receptors. Assessment of ecological effects includes identification of the types of
effects which different stressors may have on ecological receptors, along with a characterization
of the relationship between the level of exposure to the stressor and the expected biological or
ecological response. This is referred to as the stressor-response relationship.

Risk Characterization combines the exposure characterization and the effects characterization
in order to provide a quantitative likelihood or qualitative description of the nature, frequency,
and severity of ecological risks attributable to exposure to stressors at a site, as well as an
evaluation of the ecological relevance of the effects. Good risk characterizations express results
clearly, articulate major assumptions and uncertainties, identify reasonable alternative
interpretations, and separate scientific conclusions from policy judgments (U.S. EPA, 1995,
1998).

Page 4-2



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 4 ~ December 31, 2001

EXHIBIT 4-1
DEFINITIONS FOR CHAPTER 4

Assessment Endpoint - An explicit expression of an environmental value (ecological resource) that is to be
protected, operationally defined by risk managers and risk assessors as valuable attributes of an ecological
entity.

Benchmark Dose (BMD) - The dose which causes a specified level of response. The lower confidence limit on
the BMD is usually referred to as the BMDL.

Community - An assemblage of populations of different species specified by locales in space and time.

Conceptual Model - A site conceptual model (SCM) in the problem formulation for an ecological risk
assessment is a written description and visual representation of predicted relationships between ecological
entities and the stressors to which they may be exposed, including sources and pathways of stressors.

Ecological Risk Assessment (ERA) - The process that evaluates the likelihood that adverse ecological effects
may occur or are occurring as a result of exposure to one or more stressors.

Lines of Evidence - Information derived from different sources or techniques that can be used to characterize
the level of risk posed to exposed receptors; weight-of-evidence generally refers to the quantity of science,
while strength of evidence generally refers to the quality of science.

Lowest-Observed-Adverse-Effect Level (LOAEL) - The lowest level of a stressor evaluated in a test that
caused a statistically significant effect on one or more measurement endpoints linked to undesirable
(adverse) biological changes.

Measurement Endpoint (Measure of Effect) - A measurable ecological property that is related to the valued
characteristic chosen as the assessment endpoint. Measurement endpoints (also called measures of effect)
often are expressed as the statistical or numeric summaries of the observations that make up the
measurement.

No-Observed-Adverse-Effect Level (NOAEL) - The highest level of a stressor administered in a test that did
not cause a statistically significant effect in any measurement endpoint linked to an undesirable (adverse)
biological change.

Population - An aggregate of individuals of a species within a specified location in space and time.

Receptor - The ecological entity (with various levels of organization) exposed to the stressor.

Risk Characterization (ecological) - The third and last phase of ERA that integrates the analyses of exposure to
stressors with associated ecological effects to evaluate likelihoods of adverse ecological effects. The
ecological relevance of the adverse effects is discussed, including consideration of the types, severity, and
magnitudes of the effects, their spatial and temporal patterns, and the likelihood of recovery.

Scientific/Management Decision Point (SMDP) - A time during the ERA when a risk assessor communicates
results or plans of the assessment at that stage to a risk manager. The risk manager decides if information
is sufficient to proceed with risk management strategies or whether more information is needed to
characterize risk.

Species - A group of organisms that actually or potentially interbreed and are reproductively isolated from
similar groups; also, a taxonomic grouping of morphologically similar individuals.

Stressor - Any chemical, physical or biological entity that can induce an adverse response in an ecological
receptor; Superfund considers all stressors, but focuses on chemical (toxicant) stressors.

Toxicity Reference Value (TRV) - A dose or concentration used to approximate the exposure threshold for a

specified effect in a specified receptor. A TRV is often based on a NOAEL or LOAEL from a laboratory-
based test in a relevant receptor species.
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EXHIBIT 4-2

ECcOLOGICAL RISK ASSESSMENT GUIDANCE AND POLICY DIRECTIVES

EPA has developed extensive guidance and policies on methods and approaches for performing ERAs,
including the following:

(1)

(2)

(3)

4

(5)

(6)

(7)

Ecological Risk Assessment Guidance for Superfund: Process for Designing and
Conducting Ecological Risk Assessments (“ERAGS”), Interim Final (U.S. EPA, 1997a).
This document includes processes and steps specifically selected for use in ERAs at
Superfund sites. This document supersedes the 1989 EPA RAGS, Volume II, Environmental
Evaluation Manual, Interim Final (U.S. EPA, 1989). Supplements to ERAGS include the
EcoUpdates (U.S. EPA, 1991-present, Intermittent Bulletin Series, 1991 to present), which
provide brief recommendations on common issues for Superfund ER As.

Guidelines for Ecological Risk Assessment ("Guidelines") (U.S. EPA, 1998). This document
updates general (nonprogram specific) guidance that expands upon and replaces the earlier
Framework for Ecological Risk Assessment (U.S. EPA, 1992a). The approaches and
methods outlined in the Guidelines and in ERAGS are generally consistent with each other.

Risk Assessment Guidance for Superfund (RAGS): Volume 1-Human Health Evaluation
Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk
Assessments), (U.S. EPA, 2001). This guidance specifies formats that are required to
present data and results in baseline risk assessments (both human and ecological) at
Superfund sites.

Policy Memorandum: Guidance on Risk Characterization for Risk Managers and Risk
Assessors, F. Henry Habicht, Deputy Administrator, Feb. 26, 1992 (U.S. EPA, 1992b). This
policy requires baseline risk assessments to present ranges of risks based on “central
tendency” and “reasonable maximum” (RME) or “high-end” exposures with corresponding
risk estimates.

Policy Memorandum: Role of the Ecological Risk Assessment in the Baseline Risk
Assessment, Elliott Laws, Assistant Administrator, August 12, 1994 (U.S. EPA, 1994). This
policy requires the same high level of effort and quality for ERAs as commonly performed
for human health risk assessments at Superfund sites.

Policy Memorandum: EPA Risk Characterization Program, Carol Browner, Administrator,
March 21, 1995 (U.S. EPA, 1995). This policy clarifies the presentation of hazards and
uncertainty in human and ERAs, calling for clarity, transparency, reasonableness, and
consistency.

Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles
for Superfund Sites. Stephen D. Luftig for Larry D. Reed, October 7, 1999 (U.S. EPA,
1999). This document presents six key principles in ecological risk management and
decision making at Superfund sites.
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ERA is a key component of the remedial investigation process that EPA uses at Superfund sites.
ERAGS is a program-specific guidance for Superfund that focuses on chemical stressors released into the
environment from hazardous waste sites. This guidance refers to ERA as a “qualitative and/or
quantitative appraisal of the actual or potential impacts of contaminants from a hazardous waste site on
plants and animals other than humans and domesticated species. An excess risk does not exist unless:
(1) the stressor has the ability to cause one or more adverse effects, and (2) the stressor co-occurs with or
contacts an ecological component long enough and at a sufficient intensity to elicit the identified adverse
effect.” The ERAGS document provides guidance on using an eight-step process for completing an ERA
for the Superfund Program, as shown in Figure 4-2.

Compile Existing
Information
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* Problem Formulation
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Figure 4-2. Eight-step Ecological Risk Assessment Process for Superfund (U.S. EPA, 1997a).
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4.1.2 PREDICTIVE VS OBSERVATIONAL APPROACHES

In general, conclusions about ecological hazards from environmental contamination may be
based on information derived from two different techniques: the predictive approach (a comparison of
calculated exposures with a set of toxicity reference values), and the observational approach (direct
evaluation of the range of potential exposures, coupled with site-specific toxicity testing and population
demographic estimates).

Predictive Approach: The core of all Superfund ERAs is the predictive approach, including
exposure assessment, toxicity assessment, and risk characterization. The predictive approach is
based on a comparison of calculated estimates of chemical exposure of a receptor to one or more
Toxicity Reference Values (TRVs) appropriate for that chemical and that receptor. The ratio of
exposure at the site to the TRV is referred to as the Hazard Quotient (HQ). The predictive
approach has always been used at Superfund sites because it is relatively easy to implement, and
because it can be used to evaluate not only current risks, but also risks that might exist in the
future if any important changes were to occur in the level of contamination (e.g., due to on-going
fate and transport processes), or to changes in land use (a change in land use might alter a
number of habitat factors that influence the number and identify of ecological receptors). The
predictive approach, however, has the inherent uncertainties of the assumptions in the exposure
and toxicity models which are seldom site-specific and thus can lead to either over-protective or
under-protective estimates of risk.

Direct Observation: If there is a need to reduce uncertainties in the predictive approach, direct
observations of exposure and effects can be collected at Superfund hazardous waste sites. The
predictive approach used in ERA does not negate the use of descriptive toxicological approaches
or the use of site-specific exposure data, such as toxicity testing or bioaccumulation
measurements. Site-specific observations, such as toxicity testing of invertebrates over a
gradient of site contaminant exposure levels, may be used to develop site-specific and chemical-
specific toxicological relationships. Site-specific measures of exposure or ecosystem
characteristics can be used to reduce uncertainty in the exposure assessment and aid in the
development of cleanup goals in the Baseline ERA. The direct observation of the exposure and
effects on ecological receptors does not however constitute a complete risk assessment. If field
or laboratory studies are NOT designed appropriately to elicit stressor-response relationships,
direct impacts should not be used as the sole measure of risk because of the difficulty in
interpreting and using these results to develop cleanup goals in the ERA. Furthermore, poorly
designed toxicological evaluations of environmental media from the site may not allow a
definitive identification of the cause of adverse response. For example, receptor abundance and
diversity as demographic data reflect many factors (habitat suitability, availability of food,
predator-prey relationships among others). If these factors are not properly controlled in the
experimental design of the study collecting the observational data, conclusions regarding
chemical stressors can be confounded. In addition, direct observation provides information about
current risks only and not potential risks should land use or exposure change in the future.
Hence, direct observations may be used as a line of evidence in an ERA, but should not be the
sole evidence used to characterize the presence or absence of the risks of an adverse effect in the
future.
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4.1.3 POTENTIAL ADVANTAGES AND LIMITATIONS OF PROBABILISTIC METHODS IN ERA

Probabilistic risk assessment (PRA) is a computational tool that may help increase the strength of
the predictive evaluation of ecological risks, as well as sometimes helping to better evaluate distributions
of observational data for an ERA. The potential advantages of PRA compared to, or possible benefits in
augmentation of, the conventional point estimate approach for characterizing variability in exposure or
risk are discussed in Chapter 1 and Exhibits 1-6 and 1-7. In brief, point estimate calculations utilize
simplifications and assumptions in order to deal with the complex mathematics of combining inputs that
are inherently variable. Probabilistic models, in contrast, are designed to combine sets of information on
inputs that are expressed as probability distributions. Therefore, PRA generally can yield risk estimates
that allow for a more complete characterization of variability and uncertainty, and a potentially more
useful sensitivity analysis as compared to estimating sensitivities of inputs from point estimates (see
Appendix A). For example, sensitivity analysis can help determine major contributors to exposure
factors and sources of uncertainty that could help to design better sampling and analysis plans in later
iterations to help fill data gaps and reduce uncertainties for risk characterization.

Because of the inherent differences in the computational approach, as in the case with any
additional risk assessment information, PRA may sometimes lead to a different risk assessment outcome
and risk management decision than would be derived from the use of point estimate calculations alone.
The differences in the decisions stemming from the two approaches will vary from case to case,
depending mainly on the form of the exposure or risk model, the attributes of the distributions of the
input values, and the quality, quantity, and representativeness of the data on which the input distributions
are derived. Sometimes the differences between the two approaches will be quite large, and the
information gained from a PRA can play an important role as weight-of-evidence in communicating risks
to stakeholders and risk managers.

Even though PRA may have some advantages, it also has limitations and potential for misuse.
PRA can not fill basic data gaps and can not eliminate all of the potential concerns associated with those
data gaps. That is, if one or more of the input distributions are not well characterized and the
distribution(s) must be estimated or assumed, then the results of the PRA approach will share the same
uncertainty as the point estimate values. However, given equal states of knowledge, the PRA approach
may yield a more complete characterization of the exposure or risk distribution than the point estimate
approach.

Of course, any prediction of exposure or risk is based on the use of mathematical models to
represent very complex environmental, biological, and ecological systems. No matter how sophisticated
the computations, questions will always exist as to whether the calculated values are a good
approximation of the truth. Therefore, even when PRA is used as a supplemental tool to point
estimations (deterministic) of risks in the ERA process, a weight-of-evidence approach that combines the
predictive approach with direct observations will still provide the most appropriate basis for decision
making.

A second application of PRA in ERA, besides the characterization and incorporation of
distributions of data for ERA, is the characterization of uncertainty in calculated estimates of exposure or
risk. In this application, whatever uncertainty may exist in one or more of the input distributions is
characterized, and quantitative estimates of the confidence limits around the mean, upper bound, or any
other percentile of the output distribution are calculated. This use of PRA is often especially important
in risk management decision making, since the range of uncertainty around central tendency exposure
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(CTE) and reasonable maximum exposure (RME) or other upper bound estimates of exposure or risk can
sometimes be quite large. As stated before, the point estimate approach can also provide estimates of
uncertainty, but the PRA approach often provides a more complete characterization of the uncertainty.

4.1.4 Focus or THIS CHAPTER

This chapter focuses on the application of PRA as a tool for predicting ecological risks at
Superfund sites. Some of the methods and approaches described in this chapter are similar to those that
have been developed by U.S. EPA's Office of Pesticide Programs Committee on Federal Insecticide,
Fungicide and Rodenticide Act (FIFRA) Risk Assessment Methods (ECOFRAM, 1999a, 1999b) for
use in assessing environmental hazards of pesticide products. However, the methods described in this
chapter are specifically designed to be applicable at Superfund sites and to be consistent with other
Superfund guidance.

This chapter does not seek to provide guidance on the many basic issues that must be faced in
planning and performing any ERA. Prior to considering the use of PRA in an ERA, fundamental
concepts will already have been developed, such as a problem formulation with a conceptual site model,
selection of representative receptors, definition of exposed populations, definition of risk management
objectives and goals, selection of assessment endpoints, calculation of TRVs and development of site
sampling plans, etc. Likewise, this chapter does not repeat the presentation of basic statistical and
mathematical methods used in PRA, since these are described in other chapters and appendices of this
document. In summary:

1 This chapter focuses on application of PRA techniques to ERA at Superfund
sites.

1= The reader is assumed to be familiar with the basic methods used in ERA at
Superfund sites, and this chapter does not address basic tactical and
technical issues in ERA.

1= The reader is assumed to be familiar with the basic mathematical principles and
techniques of PRA as described in other chapters and appendices of this document.

4.2 DECIDING IF AND WHEN TO USE PRA IN ECOLOGICAL RISK ASSESSMENT

As shown in Figure 4-2, the ERA process for Superfund includes a number of scientific/
management decision points (SMDPs) (U.S. EPA, 1997a). The SMDP is a point of consultation between
the risk manager, EPA Regional Biological Technical Assistance Group (BTAG) coordinator, EPA
regional ecotoxicologist, and other stakeholders, and is intended to provide an opportunity for re-
evaluation of direction and goals of the assessment at critical points in the process. It is during the
SMDP discussions that it is important to decide whether or not a PRA is likely to be useful in decision
making. If so, the pursuit of distributed data is justified. Within the 8-step process of developing the
ERA, PRA could provide insight at several steps. A decision to move forward with distributional
analyses should be considered within the BTAG context during the documentation of the outcome of the
SMDPs after Step 3 within the process. As a reminder, PRA is NOT intended to be a replacement for
point estimate analyses; rather PRA supplements the required presentation of point estimates of risk. Itis
also emphasized that the use of PRA should never be viewed as or used in an attempt to simply generate
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an alternative risk estimate or PRG, compared to that which was derived by a point estimate ERA;
instead, PRA should be used to provide insightful information on distributions of various factors
(exposure, toxicity, and hazards) which can provide weight-of-evidence evaluations of potential risks in
conjunction with a point estimate ERA. There are a number of factors to consider in making these
decisions, as discussed below.

4.2.1 TEcHNICAL CONSIDERATIONS

The fundamental reason for performing any predictive risk assessment (point estimate or
probabilistic) is to provide information to risk managers in order to help support the risk management
decision-making process. As noted above, a properly performed PRA may help to yield more description
of variability in exposure and risk than can be achieved using the point estimate approach. Therefore, if
any of a site’s data may be better described and evaluated by distributions, then a PRA can be applied to
any part of an ERA or even to the entire ERA for expressing risk characterization in probabilistic terms;
again, always in conjunction with the required point estimate ERA. However, when risk estimates
derived from the point estimate approach are either far below or far above a level of risk management
concern, any such potential improvements in risk characterization are not likely to influence risk
management decision making. In these cases, PRA is not likely to be as useful in decision making. Even
so, PRA may help in these situations by providing information that may be useful in better deciding
where the gradient of excess risks are reduced to acceptable levels. Rather, it is more common for a PRA
to be useful when point estimates of risks are close to the decision threshold (such that PRA-based
refinements in the risk estimates might be important in making risk management decisions). It is for this
reason that PRA may be useful to apply either during the development of the ERA after the screen
(Steps 3 to 6, U.S. EPA, 1997a), or after point estimate results from the baseline ERA have been
completed (Steps 1 to 7, U.S. EPA, 1997a).

The results of a point estimate risk assessment will normally present the range of risks based on
central tendency exposure and reasonable maximum exposure input assumptions and on the no-observed-
adverse-effect-level (NOAEL)- and lowest-observed-adverse-effect-level (LOAEL)-based TRVs (U.S.
EPA, 1992b, 1997b). The bounds for the highest HQ are derived from the ratio of the RME compared to
the NOAEL-based TRV, and the bounds for the lowest HQ are based on the ratio of the CTE compared
to the LOAEL-based TRV. These two bounded extreme estimates of risk can be used to screen out cases
where PRA is not likely to be as useful. That is, if the risk to the RME receptor is clearly below a level
of concern using the NOAEL-based TRV, then risks to the exposed population are likely to be low and
PRA analysis is likely not needed. Likewise, if risks to the CTE receptor are clearly above a level of
concern using the LOAEL-based TRV, then risks to the exposed population are likely to be of definite
concern, and a PRA may not provide as much additional useful information to the risk manager, except in
the case where uncertainties remain high and the derivation of an appropriate and realistic clean-up goal
may be difficult. If the risks are intermediate between these two bounds (e.g., risks to the CTE receptor
are below a level of concern based on the LOAEL-based TRV but are above a level of concern based on
the NOAEL-based TRV), then PRA might be helpful in further characterizing the site risks in balance
with the point estimates of risks and in supporting decision making or in deciding if additional iterations
of analyses would be needed. This concept is illustrated graphically in Figure 4-3.
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Figure 4-3. Example of cases where use of PRA may be helpful. In cases A and E, the range of risks (CTE to
RME) estimated by the point estimate method are either well below (Case A) or well above (Case E) the likely
level of concern based on the NOAEL-LOAEL range, and PRA is not likely to alter risk management decisions
regarding the potential need for remediation. In cases B, C, and D, the point estimates of risk overlap or fall within
the range of potential concern, suggesting that PRA-based risk estimates might be helpful in supporting risk
management decisions.

The second main technical reason to consider conducting PRA is that the PRA methodology can
help characterize and quantify the degree of variability and uncertainty around any particular estimate of
exposure or risk (e.g., the CTE or RME). The purpose of the analysis would be to estimate the
uncertainty around an exposure or toxicity or risk estimate, generally with little or no additional data
acquisition. The only additional information needed to perform the analysis is an estimate of the
uncertainty in the true parameter values of the key variables in the variability model. In some cases,
these estimates of uncertainty around parameter values may be developed from statistical analysis of the
available data. Alternatively, professional judgment may be used to establish credible bounds on the
parameters, especially when relevant data are sparse.

1= Even in the presence of data gaps, uncertainty analysis using PRA can provide
useful information. Indeed, it is when data are limiting or absent that a quantitative
probabilistic analysis of uncertainty may be most helpful.
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4.2.2 CoST AND SCHEDULE CONSIDERATIONS

Performing a PRA can sometimes add time and cost to an ERA. As discussed in Chapter 2,
in part, the decision to progress from a point estimate assessment to a PRA reflects a belief that the
potential value of the PRA for risk management decision making outweighs the additional time and costs.
The tiered process encourages a systematic approach for both the point estimate and probabilistic
assessments, whereby the least complex methods are applied first. For example, the initial Tier 2
assessment may be conducted with a set of preliminary probability distributions for variability (PDFv),
developed with much the same information and assumptions that were applied to develop point estimates
in Tier 1. Parameter values can be estimated by setting the arithmetic mean equal to the CTE point
estimate, and the 95" percentile equal to the RME point estimate. The choice of distributions may differ
depending on the state of knowledge for a particular variable (see Appendix B). For example,
unbounded variables might be characterized with lognormal distributions while bounded distributions are
characterized by beta or Johnson Sb distributions. Certain variables may continue to be characterized by
point estimates, especially if the sensitivity analysis suggests that the chemical, pathway, and/or exposure
variables are relatively minor contributors to total exposure and risk. The decision to collect additional
data or explore alternative methods for developing probability distributions can be reexamined in an
iterative fashion by evaluating the expected benefits of the added information to the risk management
decision-making process. These concepts are presented in greater detail in Chapter 2 (see Figures 2-1
and 2-2).

4.3 PROBLEM FORMULATION

Once a decision has been made to include PRA in an ERA, the first step should be to re-visit the
problem formulation step and carefully determine the scope and objectives of the PRA. Typically, a
considerable amount of knowledge will have been gained during the screening level and baseline point
estimate evaluations, and this knowledge should be used to help focus and narrow the scope of the PRA.
That is, the PRA will generally utilize the same basic exposure and risk models used in the point estimate
approach, but the PRA will typically evaluate only a sub-set of the scenarios considered. For example,
chemicals, pathways, and/or receptors that are found to contribute a negligible level of exposure or risk
may usually be omitted from the PRA, while those factors that contribute significantly to an excess level
of risk concern in the point estimate approach should generally be retained. As noted previously, when a
chemical or pathway is omitted from a PRA analysis, this does not mean that it is eliminated from the
overall risk assessment; rather, it may be kept in the assessment as a point estimate.

The next step in problem formulation for a PRA should be to define whether the goal of the
analysis is to characterize variability alone, or to characterize both variability and uncertainty. In either
case, sensitivity analysis (as summarized in the preceding paragraph, or for more details see Appendix A)
should be used to help identify which of the input variables contribute the most to the variability in the
outputs (exposure, toxic effects, or risk), and the initial PRA should focus on defining the probability
density functions (PDFs) for those input variables. An analysis of uncertainty, if thought to provide
additional useful information, may also be included at the initial level, or may be delayed until the initial
analysis of variability is completed.

As always, problem formulation should be viewed as an iterative process, and it is reasonable
and appropriate that decisions regarding the scope and direction of the PRA should be reassessed (at
SMDPs) as information becomes available from the initial evaluations. As stressed above, the
fundamental criterion which should be used is whether or not further PRA evaluations are likely to
provide additional information to a point estimate ERA that will help strengthen and support the risk
management decision-making process.
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4.4 MODELING VARIABILITY IN EXPOSURE

There are two main types of descriptors of exposure that may be used in ERA: dose and
concentration. For terrestrial receptors such as mammals or birds, exposure is most often described in
terms of ingested dose (mg/kg-day). In most cases, this will be based on chemical ingested from drinking
water and/or the diet, including incidental soil ingestion, but could also include amounts of chemical
taken up across the skin or through inhalation as additional routes of exposure. The exposure levels are
most often expressed as doses, since that term tends to normalize the confounding factors of variable
daily intake rates and body weights that occur if/when one only evaluates concentrations. For aquatic
receptors, the main route of exposure is usually by direct contact and less often by ingestion, so exposure
is usually characterized in terms of concentration of contaminants in surface water, pore water and/or
sediment. Likewise, exposure of terrestrial plants and terrestrial invertebrates, such as earthworms, is
usually described in terms of concentration of contaminants in soil. In some cases, exposure of terrestrial
receptors is characterized in terms of specific tissue or whole-body concentrations of contaminants.
Examples of calculating and presenting dose-based and concentration-based distributions of exposure are
presented below.

4.4.1 CHARACTERIZING VARIABILITY IN DOSE
The general equation used for calculating the dose of a contaminant of concern in a specified

environmental medium (e.g., water, soil, air, diet, etc.) by a particular member of a population of exposed
receptors is:

DI, = C xIR;;/BW,
where:

DI;; = Average daily intake of chemical due to ingestion of medium "I" by a population
member "j" of the exposed population (mg/kg-day)

C, = Concentration of chemical in environmental medium "I" (mg/unit medium)

IR;; = Intake rate of medium "I" at the site by population member "j" (units of medium
per day)

BW, = Body weight of population member "j" (kg)

Total exposure of a population member "j" is then the sum of the exposures across the different media:

Dl = ) DI;;

In this basic equation, IR;; and BW; are random variables (i.e., they have different measurable values for
different members of the exposed population) that are often correlated. For example, a receptor with a
relatively low intake rate can also be expected to have a low body weight. Some studies utilize paired
measurements of IR and BW by individual, and present a distribution of the ratio (IR;; /BW)), referred to
as a body weight-normalized intake rate (mg/kg-day). This expression provides an alternative to using a
correlation coefficient to relate two input variables (see Appendix B), and can be entered into the dose
equation as follows:

IR,
1.0 1 E PE}?J
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where the ratio is characterized by a single probability distribution. Because the variability in this ratio is
likely to be different than the variability in the ratio of the IR and BW variables treated independently,
accounting for the correlation can affect the distribution of dose and risk. If empirical data for
quantifying the ratio are limited but a relationship is expected, plausible ranges of correlations may be
explored as a source of uncertainty in the risk estimates.

The concentration term (C;) may be characterized by a point estimate or a probability
distribution, depending on the relationship between the geographic scales of the measurement data and
receptor home range (see Appendix C, Section C.3.1). If the home range of the receptor is small
compared to the spatial distribution of sampling locations, C, may be characterized by the probability
distribution for variability in measured concentrations. Alternatively, if the home range is large
compared with the exposure area evaluated, then a point estimate (e.g., mean or uncertainty in the mean)
may be more appropriate.

In the PRA approach, PDFs should be defined for as many of the input variables as reasonable,
especially for those variables that are judged (via sensitivity analysis) to contribute the most to the
variability in total exposure. The basic principles for selecting the key variables to model as PDFs are
presented in Appendix A, and the basic methods used for selecting and fitting distributions are described
in detail in Appendix B.

Figure 4-4 shows several examples of graphical formats which may be used to present the
estimated distribution of ingested doses in an exposed population. If a single distribution is plotted (top
panel), the PDF format is usually the most familiar and useful for risk assessors and managers, but the
cumulative distribution function (CDF) format tends to be less cluttered when multiple distributions are
shown (e.g., compare the middle graph to the bottom graph). In addition, percentiles can be read directly
from a CDF format, but not from a PDF format graph. In all cases, it is very useful to superimpose the
CTE and RME point estimate ranges of exposure directly on the same graph as is used to show the
distribution of exposures estimated by PRA. This provides a convenient way to compare the results of
the two alternative computational methods, and interpret additional information that the PRA can add to
the point estimate ERA.

1= 4 conventional point estimate, range of exposure (CTE to RME) or toxicity
(NOAEL to LOAEL) and corresponding risk ranges should be calculated
and presented for comparison with the PRA results.
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Figure 4-4. Example Graphical Presentations of Dose Distributions.
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4.4.2 CHARACTERIZING VARIABILITY IN EXPOSURE CONCENTRATION

As noted above, in some cases the most appropriate descriptor of exposure is concentration
(either in an abiotic medium such as water, soil, or sediment, or in the tissues of the receptor), rather than
ingested dose. Assuming that the concentration values in the medium of concern are measured rather
than modeled, PRA is not required to generate the distribution of concentrations. Rather, the available
data may be used to define an appropriate theoretical or empirical distribution function (EDF), as
described in Appendix B. If concentrations in the medium are modeled (calculated by PRA) rather than
measured, then the exposure distribution may be estimated by using distribution functions (PDFs or
CDFs, rather than using point estimates as inputs to the fate and transport model(s) and/or uptake models
that predict the concentration levels in the medium of concern. The resulting distribution(s) of
concentration may be displayed graphically using the same formats as illustrated in Figure 4-4, except
that the x-axis has units of concentration rather than dose. As above, the point estimate ranges of
concentration used in the CTE and RME calculations should be plotted on the same graphs to provide a
convenient basis for comparing the results of the two approaches and to help interpret the additional
information that the PRA can add to the point estimate outputs.

4.5 MODELING VARIABILITY IN ToXICITY
4.5.1 VARIABILITY IN RESPONSE AMONG MEMBERS OF A POPULATION

Data on the toxicity of a chemical usually comes from laboratory studies whereby groups of
organisms (laboratory mammals, fish, benthic organisms, plants, earthworms, etc.) are exposed to
differing levels of chemical, and one or more responses (endpoints) are measured (survival, growth,
reproduction, etc.). These toxicological observations define the exposure-based stressor-response curve
that is characteristic for that specific receptor, chemical, and response.

In the point estimate approach, information from the dose/stressor-response curve is generally
converted to one or more TRVs, each representing a specific point on the dose-based or concentration-
based stressor-response curve. For example, the highest dose or concentration that did not cause a
statistically significant change in a toxicologically significant endpoint is defined as either the NOAEL
dose or the no-observed-effect concentration (NOEC), while the lowest dose or concentration that did
cause a statistically significant effect on a relevant endpoint is the LOAEL dose or the lowest-observed-
effect concentration (LOEC). Generally, exposures below NOAEL- or NOEC-based TRVs are
interpreted to pose acceptable risk, while exposures above LOAEL- or LOEC-based exposures are
judged to pose potentially unacceptable risk. It is essential to note the need for high quality toxicity data
to derive reliable and confident TRVs. Strong sampling and study designs, that generate data for site
exposure factors and toxicological stressor-response relationships, are of critical importance for
producing high quality ERAs by either point estimate or PRA approaches. Shortcomings in either area
could be major data gaps or uncertainties that detract from the confidence in the risk characterization of
the ERA, and may be a basis for pursuing additional iterations of sampling or studies that are more
strongly designed to fill those critical data gaps and reduce uncertainty.

Use of the TRV approach, however, does have some potential limitations. Most important is that
the ability of a study to detect an adverse effect depends on both the range of doses tested and the
statistical power of the study (i.e., the ability to detect an effect if it occurs). Thus, studies with low
power (e.g., those with only a few test animals per dose group) tend to yield NOAEL or NOEC values
that are higher than studies with good power (those with many animals per dose group). In addition, the
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choice of the TRV is restricted to doses or concentrations that were tested, which may or may not be
close to the true threshold for adverse effects, and this uncertainty increases as the interval between doses
increases. Finally, it is not always easy to interpret the significance of an exposure that exceeds some
particular TRV, since the severity and incidence of response depends on the shape and slope of the
exposure response curve (information that is not captured in a point estimate TRV).

One way to resolve some of these stressor-response limitations is to apply uncertainty factors to
the NOAEL or NOEC and LOAEL or LOEC, which calculates an adjusted TRV that reduces the study’s
exposure level of concern to account for those uncertainties, so that there is a lesser chance of overlooking
possible adverse exposures (i.c., avoiding a false negative conclusion). Another way to resolve some of
the stressor-response limitations is to fit a mathematical equation to the available exposure-response data
and describe the entire exposure-response curve. This may be done using any convenient data fitting
software, but EPA has developed a software package specifically designed for this type of effort. This
software is referred to as the Benchmark Dose Software (BMDS), and is available along with detailed
documentation and explanation of the methodology at www.epa.gov/ncea/bmds.htm.

The most appropriate mathematical form of the exposure-response model depends on whether the
endpoint measured is discrete and dichotomous (e.g., survival) or continuous (e.g., growth rate). For a
dichotomous endpoint, the result of the fitting exercise is a mathematical exposure-response model P that
yields the probability of a response in an individual exposed at any specified level of exposure (expressed
either as dose or concentration). Exhibit 4-3 shows an example of this process using hypothetical data.
Thus, for an individual with an exposure level of "x", the probability of a response in that individual is
simply P(x). In a population of individuals with exposures x1, x2, x3, ...xi, the expected number of
responses (e.g., deaths) in the exposed population is the sum of the probabilities across all individuals in
the population. Stated another way, the average fraction of the population that will experience the
response is given by the expected value of P (i.e., the average value of P(x)).
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EXHIBIT 4-3

MODELING VARIABILITY IN RESPONSE FOR A DICHOTOMOUS ENDPOINT

The following data are from a hypothetical study ofthe acute lethality (24 hour) of a chemical using
fathead minnows asthe test organiam:

Concentration Mumber Survival
[Wel) Tested Dead Alive
] 20 ] 20
10 14 1 18
20 20 ] 20
30 20 3 17
40 18 7 1
g0 20 15 )

These data were fit to each of the dichotomous models available in BMDZ=. The best-fit model was
the logigtic equation. & graph ofthe best it curve is shown below.
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For a continuous endpoint, the BMDS software yields equations that give the expected mean
response m(x) at a specified exposure level, along with the standard deviation s(x) that characterizes how
variable the response is among different individuals exposed at that same exposure level. The standard
deviation may be modeled either as a constant (homogeneous variance) or a function of the exposure
level (heterogeneous variance), with the choice depending on which approach yields the best agreement
with the observed variances. In most cases there will not be sufficient data to allow a meaningful
analysis of the true shape of the underlying distribution of responses at a given exposure, so the choice of
the distributional form of the variability in response will require an assumption. In the absence of any
clear evidence to the contrary, it is considered likely that the distribution of responses will not be
strongly skewed, and that the distribution may be reasonably well modeled using a normal PDF
(truncated as necessary to prohibit selection of biologically impossible or implausible values). Thus,
variability in response at dose "x" may generally be modeled as:

Response(x) ~ NORMAL[m(x), s(x), min, max]

However, if available data suggest some other distributional form is more appropriate, that form should
be used and justified.

Exhibit 4-4 shows an example of this process using hypothetical data. In this case, the mean
response was found to be well modeled by the Hill equation, and the standard deviation was found to be
best characterized as a constant (rho=0). Thus, given an exposure level "x", the mean response m(x) may
be calculated from the model, and this value along with the standard deviation may then be used as
parameters for an appropriate type of PDF (e.g., normal) to describe the expected distribution of
responses in a population of different individuals exposed at level "x". Section 4.7.2 describes methods
that may be used to characterize and quantify the uncertainty associated with this approach.
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EXHIBIT 4-4

MODELING VARIABILITY IN RESPONSE FOR A CONTINUOUS ENDPOINT

The following data are from a hypothetic al study of the effects of a chemical on the growth of
labaratany mice. Animak were exposed to the chemical wia drirk ing we ater for 21 days. The
measurement endpoint weas weight gain, expressed as a percentage of the starting weight of

each animal.
Ingested dose Humber Wl eight & ain (% Starting Walue)
migh g- day Tested hlean Stdew

ul 5 24 g

a0 5 22 =]
100 il 25 =]
150 5 18 7
200 il 7 10
250 5 -8 5

Thes e data were fit to each of the continuous modek awvailable in BMWDP5. The best-fitmodelwas
the Hill equation with constant wariance. A graph of the best fit curve i shovun below.

34

30
25 e,
20 =

Best Fit Dose Response hiodel

flean Wizight Gain (% Starting ‘walue

'2 I:l T T T T T T
o Al 100 150 00 50 00

Doze fmgdg-day)

Baszic Equations
Mean Resporseldr = int + vwd*n f o*n + d™n)
Wariance(d)= alphamean response(drrho

Best fit parametars

int 23.70
W -51.44
n 5.295
k 22ar
alpha 485
rh O {zonstantwariance])

Goodness of Fit
F 0525 P=Chi Square Goodness of Fit test statis tic
AlC 1545 AIC=pk gk e's Information Criterion
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4.5.2 VARIABILITY IN RESPONSE AMONG SPECIES

In some cases, risk management decisions may also consider community-level effects as well as
population-level or sub-populations effects. That is, a stressor might be considered to be below a level of
concern for the sustainability of a community if only a small fraction of the total number of exposed
species are affected. In this case, toxicological responses may be best characterized by the distribution of
toxicity values across species. This is referred to as a Species Sensitivity Distribution (SSD). This type
of approach is generally used for communities of aquatic receptors, since all of the different species that
make up the community (e.g., all fish, benthic invertebrates, aquatic plants, and amphibians that reside in
a stream) will be exposed to approximately the same concentration of contaminant in the water. The
process for generating an SSD consists of the following steps:

(1) Select an appropriate type of endpoint (lethality, growth, reproduction, etc.), and select an
appropriate type of point estimate from the exposure-response curve for each species. For
example, the TRV might be the LC50 for lethality or the EC20 for growth. The key
requirement is that the SSD be composed of TRV endpoints that are all of the same type, not
a mixture.

(2) Collect all reliable values for that type of TRV from the literature for as many relevant
species as possible. When more than one value is available for a particular species, either
select the value that is judged to be of highest quality and/or highest relevance, or combine
the values across studies to derive a single composite TRV for each species. It is important
to have only one value per species to maintain equal weighting across species.

(3) Characterize the distribution of TRVs across species with an appropriate CDF. Note that
there is no a priori reason to expect that an SSD will be well characterized by a parametric
distribution, so both parametric and empirical distributions should be considered.

Once an SSD has been developed, the fraction of species in the exposed community that may be
affected at some specified concentration may be determined either from the empirical distribution or
from the fitted distribution. Exhibit 4-5 shows examples of this approach. In this hypothetical case, the
TRYV selected for use was the LC,,, (in this case, the LC,,, is defined as all LC values <=LC10). A total
of 13 such values were located. The first graphical presentation is the empirical distribution function,
where the Rank Order Statistic (ROS) of each value is plotted as a function of the log of the
corresponding value. This may be used directly to estimate the fraction of the species in a community
that will be affected by any particular environmental concentration. For example, in this case, it may be
seen that a concentration of 10 ug/L would be expected to exceed the LC,, for about 33% of the aquatic
species for which toxicity data are available. The second graph shows how the data may be characterized
by fitting to a continuous distribution. In this case, a lognormal distribution was selected as a matter of
convenience, but other distributions may also yield acceptable fits. Based on the best fit lognormal
distribution for the SSD data, it is calculated that a concentration of 10 ug/L would be expected to impact
about 31% of the exposed species. However, as noted above, there is no special reason to expect that an
SSD will be well characterized by a continuous parametric distribution, so some caution should be used
in the use of a continuous distribution to fit an SSD, especially when the SSD is based on a limited
number of species and when the purpose of the SSD is to estimate percentiles and exposures outside the
observed range. The risk assessor should always present an evaluation of the robustness of an SSD to aid
in the decision process.
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EXHIBIT 4-5

HYPOTHETICAL SPECIES SENSITIVITY DISTRIBUTION

Hypothetical Data

Species LChu INLCy) Rank ROS T-sCore
a 2 0.E93 1 o.nr -1 465
4] 25 0ae 2 014 -1.068
C ] 1.099 3 0.1 -0.792
d 5 1.609 4 0249 -0.566
e 15 2708 5 036 -0.366
f 26 3.258 G 043 =080
5} 41 3714 7 050 0,000
h 55 4.007 a 057 0180
i 67 4 205 9 064 0,366
i &1 4.394 10 0.7 0566
k 125 4828 11 o.7a 0.7az
| 220 5.394 12 0 .86 1.068
m g00 5397 13 043 1465

Example EDF. ROS v Ll ww(Iog-scale)

1.0
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0.8 4

0.7 {4 Approximakly
gg{ 3% amecedats -10

gL
0.5 1

0.4 -
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0.1 1 1
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F.0
5.0 -
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5.0 4
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=
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4.6 MODELING VARIABILITY IN RISK
4.6.1 VARIABILITY IN HAZARD QUOTIENT

As noted above, the most common descriptor of risk used in predictive risk assessments is the
Hazard Quotient (HQ). The HQ is the ratio of the exposure for some generalized or typical hypothetical
member of the receptor population at a site, compared to an appropriate TRV value that equates to an
acceptable level of risk for that receptor and chemical. Usually the HQ approach is not based on a single
value, but on a range of values in which different levels of exposure (CTE and RME) are compared to
both the NOAEL to LOAEL benchmarks. In general, HQ values below 1 are interpreted as indicating
acceptable risk, while HQ values above 1 are interpreted as indicating the potential for adverse effects.

Because exposure varies among different members of an exposed population of receptors, HQ
values also vary among members of the exposed population. Several alternative approaches for
characterizing this variability by PRA methods are presented below.

Variability Within a Population

Figure 4-5 illustrates

the simplest approach for -
summarizing variability in HQ '
values among the members of Bl Tatal Daily Inta ke
an exposed population. In this &
format, the TRV values = 0.ms 4
iate f icul =
=
appropriate or. a particular £ S —_— ——
exposure are simply g omi
§uperimposed on thc‘: gra}ph = e RME Doge
illustrating the distribution of el GTE Do 1
exposures. This may be done
. 0.0é0 T T T T T T T T
elther for a dose_based (as 1] =0 100 150 i) 20 a0 0 oo 50
shown in the figure) or for a lgeskd Dose gngkg-day
concentration-based exposure
parameter. This format allows -

an easy evaluation of the
fraction of the population above
(HQ > 1) and below (HQ < 1)
each TRV, especially when
presented in CDF format.
However, this format does not
allow for a quantitative estimate
of the fraction of the population
with HQ values above any
value other than 1, although a
similar calculation and
presentation could be made for
any multiple of the TRVs, Figure 4-5. Example Comparison of Exposure Distribution to TRV.
which would directly equate to
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that multiple of the HQ (e.g., depicting the results for a value equal to 10-times the TRV would show the
fraction of the population with an HQ greater than 10).

More directly, the distribution of HQ values may be calculated by dividing each exposure value
by one or all of the TRVs based on the NOAEL, LOAEL, BMDL, etc., as shown in Figure 4-6. Note that
dividing a distribution by a constant does not change the shape of the distribution (only its scale), so the
shape of the HQ distribution will appear identical to that of the exposure distribution. Figure 4-6
illustrates two HQ distributions; one calculated using the NOAEL-based TRV, the other using the
LOAEL-based TRV. Ina case such as this where there are two or more HQ distributions, a CDF format
is generally easier to evaluate than a PDF format, since overlap between the curves is minimized. The
CDF format allows an easy quantitative evaluation of the fraction of the population above and below any
particular HQ level. For example, in the case shown in Figure 4-6, it may be seen that 83% of the
population is expected to have HQ values below 1 based on the NOAEL-based TRV, while 4% are
expected to have HQ values above 1 based on the LOAEL-based TRV. This type of description
(percentage of the population with HQ values within a specified range) is very helpful in predicting
proportions of a population exposed to specified doses of concern.

0.010
LOAEL-Based HO
® CTE Foint Est
0.002 4 NOAEL Based HO
%‘ #RME Paint Est.
0006
£ HZ =1
H 0004 ;/
o H
= :
0.002 A
0.000 : : r "
on 05 10 15 20
H azard Quotient
1I:| L R R L L L L R L T O B o e T S Ry g e E
DB'\ .
£ 4% Ppove LOAEL . e
" Bazed HZ of 1 .
£ 05 1
o 3% Below MOAEL- : LOAEL-Based HO
2 Based HO of 1 i
B 0.4 g
g 1—________h__h
3 : HOAELBased H
0.2 A 5
0.0 A .
0.1 10 10.0
H azard Quotient

Figure 4-6. Example Distribution of HQ Values.
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Variability Between Species

A similar approach may be used for characterizing the variability in risks among different species
in a community. Figure 4-7 is an example that compares the distribution of concentration values in a
water body (the variability might represent either time or space) to an appropriate SSD of TRVs for
different species of aquatic receptors that might reside in that water body. Three different graphical
formats are illustrated. In the upper panel, the PDF of concentration is compared to the CDF of the SSD.
This format is easy to understand and may be interpreted visually, but is difficult to interpret
quantitatively. The middle panel shows that same information, but with both distributions presented in
CDF format. This allows for a quantitative evaluation of the fraction of the species that will be above
their respective TRVs at any specified part of the exposure distribution. For example, using a simple
graphical interpolation process (shown by the dashed lines), it may be seen that the 90" percentile of
concentration (21 ug/L) will impact approximately 24% of the exposed species. The bottom panel shows
the results when this same process is repeated (mathematically) for each of the concentration percentiles.
As seen, hazards to the community of receptor species is quite low until concentration values reach the
80™ to 85™ percentile, but then rise rapidly. For example, a concentration value equal to the
95" percentile (about 28 ug/L, which will occur approximately 5% of the time) is expected to impact
approximately 68% of the exposed species, and the 99" percentile (which will occur about 1% of the
time) is expected to impact nearly all of the exposed species.
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Figure 4-7. Example Presentation of Species Sensitivity Distribution.
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4.6.2 VARIABILITY IN RESPONSE

As noted above, HQ and Hazard Index (HI) (where appropriate) values are a convenient way to
characterize risk to ecological receptors, but interpreting the biological significance of the ranges of HQ
values greater than 1 is not always easy. One of the main advantages to the PRA approach is that
distributions of exposure may be combined with exposure-response distributions in order to generate
distributions that characterize the frequency and magnitude (severity) of responses in an exposed
population. Two examples of this approach are presented below.

Example 1: Dichotomous Response

In this hypothetical example, a toxic chemical is being transported by surface water run-off from
a Superfund site into a nearby stream. Because of short-term and seasonal variability in rainfall levels
(which influences both run-off rate and stream flow), the concentration of the chemical in the stream has
been observed to vary as a function of time. The risk manager at the site wants to know two things:
(1) How often will the concentration enter a range that can cause acute lethality in fish?; and (2) When
that happens, what percent of the fish population is likely to die? Exhibit 4-6 summarizes the
hypothetical concentration data and illustrates the basic approach. In this case, the concentration data are
most conveniently modeled as an empirical PDF. Next, assume that the acute concentration-lethality
curve is available for the chemical of interest in a relevant indicator species of fish. For convenience,
assume the response function is the same as that shown in Exhibit 4-3. Then, the PDF for acute mortality
may be generated by repeated sampling from the concentration distribution and calculating the
probability of response (acute mortality) for each concentration value selected. Because this is a case
where the entire population of fish at the exposure location may be assumed to be exposed to the same
concentration in water, the probability of mortality in a single fish is equivalent to the average fraction of
the population that is expected to die as a result of the exposure. The resulting PDF is shown in the
graph in Exhibit 4-6. As seen, lethality is expected to be low or absent about 95% of the time, but about
5% of the time the concentration may enter a range where acute lethality may occur. The extent of
mortality within the exposed population is expected to range from about 20% at the 97" percentile of
exposure (i.e., this is expected to occur about 3% of the time), up to about 70% at the 99" percentile of
exposure (i.e., this is expected to occur about 1% of the time).
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EXHIBIT 4-6

MODELING VARIABILITY IN A DICHOTOMOUS RESPONSE

SCEnano
Exposzure of a populstion of fizh to concentration waluesin a stream that vary over time
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Example 2: Continuous Response

Exhibit 4-7 provides a hypothetical example of modeling variability in response for a continuous
endpoint. In this example, assume that a toxic chemical has been released by a Superfund site and has
been transported in low levels by air to a nearby meadow. Among the receptors of potential concern in
the meadow are a number of different types of small mammal, and the field mouse has been selected to
serve as an indicator species for this group. The goal of the PRA is to characterize the effects of the
chemical on the growth of field mice in the meadow. Exposure occurs mainly by ingestion of seeds that
have been contaminated by uptake of the chemical from soil, and it has been determined that the
variability in average daily intake (DI) of chemical from the diet can be modeled as a lognormal
distribution with mean of 104 mg/kg-day, and a standard deviation of 127 mg/kg-day. Assume for
convenience that the exposure-response curve for growth inhibition in mice by the chemical is the same
as that presented previously in Exhibit 44. Given these inputs, the expected distribution of responses is
derived as follows:

Step 1: Draw a random value for the DI of a random member of the population

Step 2: Calculate the mean response m(d) and the standard deviation of the response s(d) for a
group of individuals exposed at that dose (d)

Step 3: Define the distribution of responses at that dose as NORMAL[m(d), s(d)]

Step 4: Draw a response from that distribution, and track this as the output variable

An example of the output for this example is shown in the two graphs at the bottom of
Exhibit 4-7. As seen, mice that are not exposed to the chemical display a range of growth rates ranging
from about +10% to +40%. Many of the mice (about 90%) residing in the contaminated field are
experiencing a range of growth rates that are only slightly decreased from rates expected for unexposed
animals. However, about 10% of the animals have weight gains that are markedly less than for
unexposed animals, ranging from about +5% to -30% (i.e., a net weight loss of 30% compared to the
starting weight).

It should be noted that the response distribution calculated in this way is what would be expected
for a large population of exposed receptors. If the actual exposed population is small, then the actual
response distribution may vary somewhat compared to the typical response shown in Exhibit 4-7. In
cases where it is important to evaluate this variability about the expected average pattern of response, this
may be done by running repeated Monte Carlo simulations using a number of trials (iterations) within
each simulation that is equal to the expected size of the exposed population. Each simulation will thus
represent a possible response distribution in the exposed population, and the range of responses across
different populations may be evaluated by comparing the multiple simulations. As noted above, the
magnitude of the variability between populations is expected to be small if the population size (number
of trials) is large, although this depends on the characteristics of the exposure and response functions.
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EXHIBIT 4-7

MODELING VARIABILITY IN A CONTINUOUS RESPONSE
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4.6.3 JoINT PROBABILITY CURVES

In this approach, if data are available to characterize the probability of a particular exposure
occurring, and an exposure-response curve is available, these may be combined to yield a curve (referred
to as a Joint Probability Curve) that shows the probability that a response greater than some specified
magnitude will occur. An example is shown in Figure 4-8. The upper panel shows a hypothetical
cumulative exposure probability distribution (plotted on the primary y-axis) along with the
exposure-response curve (plotted on the secondary y-axis). The steps needed to generate the Joint
Probability Curve are as follows:

Step 1: Select an exposure level "x" and record the probability (P,) of exceeding that exposure.
For example, in Figure 4-8, at an exposure of 12 units, the cumulative probability of exposure is
84%. Thus, the probability of exceeding that exposure is 16%.

Step 2: Find the expected response at that same exposure (R,). In this case, the response at an
exposure of 12 is 2.2.

Step 3: Plot a data point at R_ on the e 4

x-axis and P, on the y-axis. —_

0.7
CumukE e

0.5 4 Prob =il o7
Expasure

Step 4: Repeat this process for many
different exposure levels, being sure
to draw samples that adequately cover
all parts of the probability scale.

REzporce T+
0.5 o

Cumuale Probabilly of Exposuore
Rezporse (arblrary unlk)
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Figure 4-8. Example Joint Probability Curve.
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Note that unless 2-D MCA is used, this approach does not require Monte Carlo modeling.
Rather, the calculations can usually be performed in a spreadsheet format using built-in spreadsheet
functions.

4.7 MODELING UNCERTAINTY IN ECOLOGICAL RISK ASSESSMENTS

As emphasized above, one of the greatest potential benefits of the PRA approach is the ability to
combine estimates of uncertainty associated with different components of the exposure and risk models
in order to describe the overall uncertainty in final exposure or risk estimates. Some basic options for
characterizing and presenting uncertainty in exposure, toxicity, HQ, and response are presented below.

4.7.1 UNCERTAINTY IN EXPOSURE

Most estimates of dose-based exposure for terrestrial receptors (birds, mammals) are based on
calculated estimates of chemical intake using simple or complex food web models, sometimes coupled
with environmental fate and transport models that can link risk to a receptor with a source of
contamination. In cases where
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direct contact rather than i 04 1.1 20
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as discussed in Appendix D. In D40 20.1 206 304
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brief, probability distribution
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the probability distribution
functions of variability (PDFv's)
for some or all variables in the
exposure model. Then, a

2-D MCA is used to derive
quantitative estimates of the
uncertainty around each
percentile of the variability
distribution of exposure.

Figure 4-9 illustrates the type of g = e i
tabular and graphic outputs that Ingested Dose (maheg-day)
this approach generates.
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Figure 4-9. Example Presentation of Uncertainty in Exposure.

If exposure is based on measured rather than calculated values by PRA (e.g., measured
concentrations in an abiotic medium, measured concentrations in receptor tissues), uncertainty in the
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empirical or best-fit continuous distribution through the data can be quantified using the statistical
methods detailed in Appendix B.

As discussed in Chapter 1, it is important to understand that there are many sources of
uncertainty and that this approach to uncertainty analysis focuses mainly on parameter uncertainty and
uncertainty in the true shape of input variable distributions. It does not capture other sources of
uncertainty relating to the fundamental adequacy of the exposure and risk models used to describe the
behavior of complex biological systems or of sampling and analytical errors and uncertainties, so the
uncertainty estimates should always be interpreted in this light as being somewhat incomplete.

4.7.2 UNCERTAINTY IN TOXICITY

Toxicity information used for ERAs is often a source of uncertainty in the risk assessment
process. This uncertainty may arise from multiple areas and may include both quantitative uncertainty in
the dose-response data (involving toxicokinetics and study designs) and qualitative uncertainty in the
relevance of the data (involving toxicodynamics). Methods for characterizing the quantitative
uncertainty in both point estimates of toxicity (TRVs) and in full exposure-response curves are outlined
below.

Uncertainty in TRVs

TRVs for a chemical are point estimates of exposure levels that do not cause an unacceptable
effect in an exposed receptor population. Ideally, all TRVs would be based on NOAEL and LOAEL
values derived from studies in which the receptor, endpoint, exposure route and duration were all
matched to the assessment endpoints defined for the site. However, such exact matches are seldom
available. Therefore, it is often necessary to extrapolate available toxicity data across route, duration,
endpoint and/or species, leading to uncertainty in the most appropriate value to use as the NOAEL or
LOAEL. There are no default methods for developing TRVs on a site. However, some options include
the use of allometric dose scaling models, physiologically-based biokinetic models, benchmark dose
estimates or other approaches based mainly on policy and/or professional judgment. Guidelines for
dealing with the uncertainty in components of the TRV derivation by uses of PRA are provided below.

Uncertainty in NOAELs and LOAELs

Uncertainty in the NOAEL or LOAEL for a chemical has two components: (1) uncertainty within
a study; and (2) uncertainty between studies, under exact specified conditions of exposure.

Assuming that a single study has been selected to provide the NOAEL and/or LOAEL values to
be used in deriving a TRV for a chemical, it is customary to define the NOAEL as the highest exposure
that did not cause a statistically significant effect, and the LOAEL is the lowest exposure that did cause a
statistically significant effect. As noted earlier (see Section 4.5.1), this approach has a number of
limitations, and there may be substantial uncertainty as to whether the observed NOAEL and LOAEL
values actually bracket the true threshold effect level. One way to quantify uncertainty in the exposure
levels that cause some specified level of adverse effect is through the use of exposure-response curve-
fitting software such as EPA's BMDS package. In this approach, the risk assessor selects some level of
effect that is judged to be below a level of concern, and another level of effect that would be of concern.
The choice of these response levels is a matter of judgment, and depends on the nature and severity of the
endpoint being evaluated. A specified level of effect is referred to as a Benchmark Response (BMR),
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and the exposure that causes that response is referred to as the Benchmark Dose (BMD). Given
information on the number of test organisms in each test group and on the variability of the response in
those organisms, the BMD software uses maximum likelihood methods to derive the 5% lower
confidence bound on the exposure that causes the BMR. This is referred to as the BMDL. This
uncertainty bound may be used to quantify the uncertainty in the BMD, and hence to characterize this
source of uncertainty in the TRV. The simplest method for approximating the uncertainty distribution
around the BMD is to assume the distribution is approximately normal, with mean equal to the BMD and
standard deviation (standard error) given by:

Stdev=(BMD - BMDL) / 1.645

For advanced analyses, a more accurate characterization of the uncertainty distribution around the BMD
may be derived by Monte Carlo simulation. In this approach, each model parameter is assumed to be
normally distributed, with mean and standard error values provided by the BMDS output. Monte Carlo
simulation is then used to select alternative model parameter sets, being sure to account for the
covariance between parameters (the covariance matrix is also provided by the BMDS output). For each
parameter data set, the BMD is calculated, and the distribution of BMD values across many iterations is a
better approximation of the uncertainty in the BMD.

Uncertainty in the effect level (NOAEL or LOAEL) for a chemical may also arise because there
is more than one study available for the chemical, and the studies do not yield equal estimates of the
effect level. It is important to note that the process of reviewing available toxicity studies, choosing the
most relevant endpoint for use in deriving a TRV, and identifying the most relevant study is a process
requiring basic toxicological expertise (not probability or statistics), and this process must be completed
both for point estimate and probabilistic risk assessments. In general, studies based on different
receptors, endpoints, exposure routes and/or durations are not equally relevant for evaluating a particular
assessment endpoint in a particular indicator species. However, in some cases, multiple studies of the
same endpoint in the same species will be available. In such a case, assuming that all the studies are
judged to be equally reliable, the best estimate of the LC50 may be derived by calculating the geometric
mean of the available alternative values (after adjustment to constant hardness). Uncertainty around the
best estimate may then be based on the observed inter-study variability, using the basic principles for
choosing PDFu's as described in Appendix B.

Uncertainty in Extrapolation of TRVs

In general, extrapolation of TRVs across species or endpoints is not desirable, since the
magnitude and direction of any potential error is generally not known. Sometimes, extrapolations
between species are attempted based on allometric scaling models that seek to adjust toxicity values
accounting for differences in body weight. Alternatively, physiologically-based pharmacokinetic
(PBPK) models that seek to account for differences in a number of other physiological variables
(metabolism rate, organ size, blood flow, etc.) can be used. However, the validity of these models is
often not well established. In those cases where these models are used, and where the uncertainty in the
model is judged to warrant quantitative evaluation, the primary source of the model should be consulted
in order to derive an estimate of the uncertainty in the quality of the extrapolation and in the parameters
of the model. As noted earlier, PRA may capture uncertainty associated with model input parameters,
but does not usually capture all sources of uncertainty in the model. In particular, most models of this
sort are designed to extrapolate only the average response as a function of dose, and are not intended to
extrapolate variability between individuals at a specified dose. When no mathematical model is available
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to support quantitative extrapolation across species, exposure duration or endpoint, professional
judgment and/or policy may be used to select extrapolation factors to account for the uncertainty.

The risk assessor should ensure that the risk manager understands the uncertainty associated with
any model selected and applied, and that the results of the calculations (point estimate or PRA) are
conditional upon the model selected.

Uncertainty in Parameters of the Dose-Response Models

When toxicological exposure-response data are fit to mathematical equations, the fitting software
will usually provide quantitative information on the uncertainty in the best estimates for each of the
model parameters. For example, in the dichotomous model illustrated in Exhibit 4-3, the output from the
BMDS software included the following information on the uncertainty in the parameters of the best-fit
logistic equation:

Parameter Best Est Std Error (SE)
a -4.80 0.83
b 0.101 0.019

Because the uncertainty in the best estimate of each model parameter is asymptotically normally,
uncertainty in the parameters may be modeled as:

PDFu (parameter ))=NORMAL(best estimate of parameter i, SE of parameter 1)

Note that the parameters of the model are generally not independent, and generally should not be treated
as such. Thus, when modeling the uncertainty in the parameters of the best-fit exposure-response model,
the PDFV's for the parameters should be correlated according to the correlation matrix or the variance-
covariance matrix, as provided by the modeling software.

4.7.4 UNCERTAINTY IN RESPONSE

If the risk characterization phase of the risk assessment focuses on an estimation of the
distribution of responses rather than the distribution of HQ values, the uncertainty in the distribution of
responses can be evaluated using two-dimensional Monte Carlo techniques using PDFu's for the
parameters of the exposure and exposure-response models derived as described above. The same
graphical output may be used for this presentation as was illustrated in Figure 4-9, except that the x-axis
is response rather than HQ. This format is illustrated in Figure 4-10 for a dichotomous endpoint (e.g.,
acute lethality). In this example, the average probability of response among the members of the exposed
population (shown in the graph by the black diamond symbols) is 8.2%, with a confidence bound around
the mean of 4.9 to 12.8%. This is equivalent to concluding that about 8.2% of the population is expected
to suffer acute lethality, but the true fraction dying could range from 4.9 to 12.8%.
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Figure 4-10. Example Presentation of Uncertainty in Response.

4.7.3 UNCERTAINTY IN HAZARD QUOTIENT

Once the uncertainty in exposure and/or toxicity distributions has been characterized as
described above, there are a number of options for presenting the resultant uncertainty in the HQ (or HI,
if appropriate and applicable for summing HQs) distributions. Figure 4-11 shows one simple graphical
format, where the point estimate of the TRV is superimposed on the uncertainty bounds of the exposure
distribution (upper panel), or the uncertainty bounds of the TRV are superimposed on the best estimate of
exposure (lower panel). One could also superimpose the range of TRVs over the range of exposures, to
capture most of the uncertainty in the HQ. Furthermore, such distributional outputs should always show
the point estimate ranges of CTE and RME exposures in respect to the ranges of TRVs, for use in
weight-of-evidence to help interpret the PRA and point estimate results. The advantage of this format is
that no additional Monte Carlo modeling is needed to derive initial descriptors of uncertainty in risk. For
example, in the upper panel it may be seen that the best estimate of the fraction of the population exposed
at a level below the TRV is about 83%, but that this is uncertain due to uncertainty in the exposure
estimates, and the true percent below the TRV might range from 74 to 90%. Similarly, in the bottom
panel, the best estimate of the fraction of the population below the TRV is also about 83%, but due to
uncertainty in the TRV the actual value could range from 64 to 91%. Uncertainty could also be
presented by showing a combined graph with both ranges of exposure and TRVs, such as described
below.
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Figure 4-11. Example Presentation of Uncertainty in Exposure and TRV.
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A more complete characterization of uncertainty in HQ may be achieved by using PRA to
combine the uncertainty in both the exposure and the TRV terms, resulting in the uncertainty bounds on
the HQ distribution itself (see Figure 4-12). In this example, it may be seen that 63% of the exposed
population is estimated to have an HQ below 1.0, but that this is uncertain due to uncertainty in both the
exposure distribution and the TRV, and that the true fraction of the population below a level of concern
(HQ < 1) could range from 45 to 81%.
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Figure 4-12. Example Presentation of Uncertainty in HQ Estimates.

4.8 INTERPRETING RESULTS OF AN ECOLOGICAL PRA

In some cases, the information contributed by a PRA may provide a more complete
characterization of risks to a population of receptors than can be obtained by using point estimate
methods. However, whether by PRA or by point estimate or a combination, the results of the risk
assessment must be interpreted to reach a risk management decision.

In contrast to the case for human health risk assessments (where default risk-based decision rules
are well established), there are no established default decision rules for identifying when risks to
ecological receptors are and are not of concern. In the point estimate approach, EPA guidance (U.S. EPA
1992b, 1995) recommends consideration of both the RME and CTE exposure/dose estimates along with
TRVs based on both LOAELs and NOAELs (U.S. EPA 1997a) to reach a risk management decision.

The same principle applies to probabilistic ERAs.

In some cases, interpretation of an ecological PRA is relatively simple. For example, if the
distribution of HQ values calculated using an appropriate NOAEL-based TRV are less than 1.0 for nearly
all members of the population, then it is likely that risks are within an acceptable range for the
population. Conversely, if the distribution of HQ values calculated using a LOAEL-based TRV are
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significantly greater than 1.0 for most members of an exposed population, then it is likely that risks are
not acceptable for the population. However, for cases which fall between these bounding conditions (and
for cases where one needs to clearly define the boundaries of potential excess risks for a gradient of
contamination and exposures), the level of risk or response that is considered acceptable must be defined
by the risk assessor and the risk manager on a site-specific and receptor-specific basis. This evaluation
should take the following factors into account:

(1) The Risk Management Goal

The risk management objective for most Superfund ERAs is defined as population sustainability
(U.S. EPA, 1999). In this case, harm to some members of the exposed population may be acceptable, if
that harm does not lead to an overall reduction in population viability. This situation (protection of a
population rather than protection of individuals) is sometimes equated with use of the CTE (average)
receptor as the basis for risk management decision making, That is, if the HQ for the CTE receptor is
below a level of concern, it is sometimes assumed that population risks are acceptable.

However, the choice of the CTE receptor as the basis for risk management decision making may
not be sufficiently protective in all cases. For the vast majority of wild populations, the proportion of the
population that must be protected to ensure population stability will be unknown. At a small number of
sites, a population biologist may be able to provide some information. Moreover, the percentile of the
CTE receptor in the exposure or risk distribution may vary depending on the shape of the distribution.
The proportion of the population experiencing exposure greater than that of the CTE receptor could
range from less than 10% up to 50% or even higher. Also, the ecological significance of an adverse
effect on some members of a population depends on the nature of the stressors and on the life history and
population biology of the receptor species. Because of these complexities, use of the CTE as a decision
threshold for nonthreatened or endangered species may be appropriate in a small number of cases, but
risk assessors and risk managers should realize that the choice of the CTE receptor requires a species-
and endpoint-specific justification and the CTE should not be used as the default basis for a risk
management decision. Rather, for the majority of ERAs, the risk management decision should be based
on the RME receptor or an upper percentile of the distribution of variability in risk/exposure.

(2) The Toxicological Basis of the TRV

The biological significance of a distribution of variability in HQ cannot be interpreted without a
proper understanding of the nature of the TRV being used to evaluate the distribution. This includes the
nature of the toxicological endpoint underlying the TRV, its relevance to the assessment endpoint, and
the shape (steepness) of the dose-response curve. For example, an HQ of 2 based on an EC20 for
reduction in reproductive success would likely be interpreted as more significant toxicologically than an
HQ of 2 based on the EC20 for an increase in liver weight. Likewise, an HQ of 2 based on an LC,,, for
acute lethality would be more significant if the dose-response curve for lethality were steep than if it
were shallow, since it would be easier to cause greater response with smaller increases in exposure to
contaminants.
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(3) The Characteristics of the Receptor

Ultimately, the question which must be assessed is whether an effect of degree "x" occurring in
"y" percent of the population is biologically and ecologically significant. This, in turn depends on the
attributes of the receptor being evaluated. For example, a reduction of 10% in the reproductive success
of a fecund and common species (e.g., the field mouse) might not lead to a significant reduction in
population number, while the same effect could be of concern in a species with lower fecundity and/or
lower population density (e.g., the moose). Thus, the interpretation of an analysis of variability in
exposure and/or effect often requires the input of a trained population biologist with expertise in the
receptor of concern.

Because of these issues, there is no default rule for what level of effect is and is not acceptable
for an exposed ecological population; except for the case of no potential excess risks where the RME
exposures do not exceed the TRV based on a NOAEL, assuming there is reasonable confidence in those
exposure and toxicity values. In some cases, mathematical models may be available for predicting the
population-level consequences of a given pattern of effects (e.g., see ECOFRAM 1999a for some aquatic
population models), but in general the extrapolation from a distribution of individual responses to an
estimation of population-level effects is difficult. For this reason, close consultation between the risk
manager and the ecological risk assessor is necessary for translating results of an ERA into an
appropriate and successful risk management decision.

4.9 GUIDELINES FOR PLANNING AND PERFORMING A PROBABILISTIC ERA

4.9.1 PLANNING AN EcoLoGICcAL PRA

Chapter 2 provides a general discussion of the key steps that should be followed when planning a
PRA. These guidelines are equally applicable to ecological PRA as to human health PRA. Of the key
steps in the process, most important are the following:

Dialogue Among Stakeholders

As discussed in Section 4.2, the decision if and when to perform an ecological PRA is an SMDP
shared by risk assessors, risk managers, and stakeholders, including members of the public,
representatives from state or county environmental agencies, tribal government representatives, natural
resource trustees, private contractors, and potentially responsible parties (PRPs) and their representatives.
A scoping meeting should be held after the completion of the baseline risk assessment in order to discuss
the potential purpose and objectives of a PRA, and to identify the potential value of the analysis to the
risk management process. If it is decided to perform at least an initial PRA evaluation, subsequent
meetings of a similar type should occur iteratively in order to assess whether any further effort is
warranted.

Preparation of a Workplan

Any PRA beyond the simplest screening level evaluation should always be accompanied by a
workplan. The purpose of the workplan is to ensure that all parties agree on the purpose and scope of the
effort, and on the specific methods, data, and procedures that will be used in the PRA. Workplans should
be developed according to available guidance for workplans for nonprobabilistic ERA (U.S. EPA, 1992b,
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1997a) and should consider three elements: (1) the 16 guiding principles of MCA (U.S. EPA, 1997b);

(2) the eight guidelines for PRA report submission (U.S. EPA, 1997b); and (3) the tiered approach to
ERA (U.S. EPA, 1997a). Development of a workplan for PRA is discussed in greater detail in Chapter 2,
and Exhibit 4-8 summarizes the key elements of a proper workplan. The workplan must be submitted to
the BTAG coordinator and/or regional ecotoxicologist for review and for approval by the risk manager.
The EPA strongly recommends that PRPs who wish to perform PRAs of ecological risk involve the
Agency in the development of a workplan in order to minimize chances of significant disagreement, as is

required by EPA policy.

1. Introduction/Overview
Conceptual site model
Assessment endp oints
Indicator species
Measures of exposure and effect

EXHIBIT 4-8

EXAMPLE ELEMENTS OF A WORKPLAN FOR ECOLOGICAL PRA

2. Description of Exposure and Risk Models
Basic exposure models (fate and transport, uptake, food web, intake, etc.)
Basic risk models (HQ, dichotomous response, continuous response)

3. Results from a Point Estimate Assessment
CTE and RME risk estimates from baseline evaluation

4. Rationale why a PRA will be helpful
Goals of the assessment (variability, uncertainty, both)
Expected benefit to risk manager

5. Description of the Proposed PRA
Exposure scenarios to be evaluated
Output variables to be modeled in variability and/or uncertainty space

6. Proposed PDFs, and their basis
Method for performing sensitivity analysis and for selecting key variables
Data source for characterizing key variables
Approach for selecting and parameterizing key variables
Proposed list of PDFs for exposure variables (optional but desirable)
Method for dealing with the concentration term
Method for dealing with correlations

7. Proposed Software and Simulation Approach
Commercial or custom
Monte Carlo or Latin Hypercube
Number of Iterations
Method(s) for sensitivity analysis

8. Preliminary Results (optional, but helpful)
Results of a screening level evaluation
Identification of variables where more effort is needed to improve the
distribution function
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4.9.2 EVALUATING AN EcoLoGgicAL PRA

When an ecological PRA is submitted to EPA for consideration, it will be reviewed in order to
determine if it has been performed in accord with sound principles of ERA (U.S. EPA, 1997a, 1998), and
with sound principles of PRA (U.S. EPA, 1997b). A general checklist that may be helpful to reviewers is
provided in Appendix F, and key features of this checklist are summarized in Exhibit 4-9. Eight specific
conditions for acceptance of a PRA submitted to EPA are provided in U.S. EPA (1997b).

At the discretion of EPA risk assessor or risk manager, the PRA report may be submitted for
additional EPA internal review and/or an external review process in accord with Agency guidelines for
conducting peer reviews (U.S. EPA, 2001). The external peer review may be used in cases where the
issues are complex or contentious and the opinions of outside expert peer reviewers can improve the
PRA.

EXHIBIT 4-9
CHECKLIST FOR INCLUDING A PRA AS PART OF THE ERA (SEE APPENDIX F)

*  All risk assessments should include point estimates prepared according to current Superfund national and
regional guidance.

* A workplan must be submitted for review and approval by the appropriate EPA regional project manager
(RPM) and/or BTAG coordinator prior to submission of the PRA.

* A tiered approach should be used to determine the level of complexity appropriate for the ERA. The
decision to ascend to a higher level of complexity should be made with the risk manager, regional risk
assessor and other stakeholders.

* The eight conditions for acceptance presented in the EPA policy on PRA (U.S. EPA, 1997b) should be
clearly addressed by each PR A submitted to the Agency.

* Information in the PRA should possess sufficient detail that a reviewer can recreate both the input
distributions and all facets of the analysis. This includes copies of published papers, electronic versions
of necessary data and other materials deemed appropriate by EPA.

4.10 EXAMPLE OF THE TIERED PROCESS IN ERA

As discussed in detail in Chapter 2, one of the key elements in the risk assessment process is
deciding if and when further analysis is warranted. This includes decisions regarding whether to employ
PRA calculations to supplement point estimate calculation, and if so, what level of effort to invest in
those PRA calculations. The following section presents a relatively simple hypothetical example
illustrating how the tiered approach might operate at a site where ecological risk is an important concern.
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Problem Formulation

PestCorp is a former chemical manufacturing facility that produced mainly chlorinated pesticides
10 to 20 years ago. Data collected on the PestCorp property indicate that a number of spills or releases
of chlorinated pesticides took place when the facility was in operation, and that site soils are broadly
contaminated, especially with pesticide X. This contaminated soil has lead to impacts on a nearby lake
of about 300 acres that receives surface water runoff from the PestCorp site. Samples from the lake
reveal low but detectable levels of pesticide X in water, with relatively high values in sediment and in the
tissues of a variety of aquatic organisms (crayfish, snails, benthic macroinvertebrates and fish). The
concentration values in all media (water, sediment, aquatic organisms) tend to be highest in the part of
the lake receiving runoff from the PestCorp property, with a gradient of diminishing values at locations
further away from the area where runoff enters the lake.

A BTAG committee formed by EPA to identify potential ecological concerns at the site
recognized that many different species could be exposed to the contaminants in the lake, including
aquatic receptors residing in the lake (fish, invertebrates, aquatic plants), as well as mammals and birds
that frequent the lake for food or water. Because pesticide X is lipophilic and tends to biomagnify in the
food web, the BTAG decided that the highest risks would likely occur in higher-level predators such as
mammalian omnivores, and selected the racoon as a good indicator species to represent this trophic
group. Pathways of exposure that were identified as warranting quantitative evaluation included
(a) ingestion of water, (b) ingestion of aquatic food items, and (c¢) incidental ingestion of sediment while
feeding or drinking at the lake. The BTAG determined that the assessment endpoint was protection of
mammalian omnivore populations.

Point Estimate Risk Evaluation

A series of iterative screening-level point estimate calculations (Steps 1 to 2 of the 8-step
ERAGS process) were performed to investigate whether or not there was a basis for concern at the site.
Initial calculations using simplified and conservative inputs (i.e., exposure based on the maximum
measured concentration in each medium, an area use factor of 1, and the most conservative available
TRVs) indicated that the HQ value for pesticide X could be quite large. Therefore, a refined screening
level evaluation was performed in which point estimates of CTE and RME risk were derived using the
best information currently available. Key elements of the approach are summarized below:

. The CTE receptor was assumed to be exposed at a location where concentration values were the
average for the whole lake, and the RME receptor was assumed to be exposed at a location where
concentrations were equal to the 95" percentile of values from the lake.

. Because only limited data were available for measured concentrations of pesticide X in aquatic
prey items, the concentration values in aquatic prey were estimated using a linear
bioaccumulation model: C(prey)=C(sed) x BAF. The BAF was estimated from the existing data
by finding the best fit correlation between the concentration values in sediment and crayfish at
7 locations in the lake: C(crayfish)=5.04 x C(sed) (R*=0.792).

. The TRV values were based on a study in mink in which the toxicity endpoint was the percent
inhibition of reproductive success.
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These inputs and the resulting HQ values are shown in Exhibit 4-10. As seen, estimated risks to the CTE
receptor approach or slightly exceed a level of concern (HQ=4.7E-01 to 1.4E+00), and risks to an RME
receptor are well above a level of concern (9.1E+00 to 2.7E+01). The chief pathway contributing to the
dose and risk is ingestion of contaminant in aquatic food web items (crayfish, fish, amphibians, etc.).

EXHIBIT 4-10

REFINED SCREENING POINT ESTIMATE INPUTS AND RESULTS

Basic mode|
Hia = Dlftotall f TRY
Diltatall = Dl{water) + Diffood) + Dl(sed)
DGy = Cl* IR AUF

Cther Azsum ption s
Cidiet) = Cized) * BAF
IR(zed) = IR(diet) * F=ed)
IR(diet) = IR{total) * Fdiet)

Foint E=t Walues
Category  |Wariable “fariable Unitz CTE FhiE
Inputs C oncentration Concentration inwater mgsL 0.1z 0:3s
Concentration insediment mgskg 24 Tr
BAF (sediment to aquatic preyd - 5 4]
Concentration in aquatic prey mgskg 120 jeSia]
Intde Rates Tatal vuater intake rate Lg-day 002z 01z
Total food intadoe rate kghe grday 0.oS ona
Fraction of diet thati= sed - [EREC] upnlst
Fraction of diet that s aquatic prey - 0.5 025
FArea Use Factors Fraction of total water ingested atthe lake - 0z 0.6
Fraction of total dietfrom the lake - 025 0.5
TRWs LOAEL-bas ed TRW mgskg day a5 0.6
NOAEL-based TRW migshg day oz 0z
Fesults L aily Intak e i gter ingestion migskg day jean]=guci 2.TE-02
Sediment ingestion mgskg day 1TAEO2 2.45E-01
Aquatic prey ingestion migskg day 27EM S52E+00
Tatal migskg day 28EM S5E+0
HQ(LOAEL-Based) i gter ingestion d9E 02 4GE-02
Sediment ingestion 18E02 4. 2E-01
Aquatic prey ingestion 45E01 S87E+OO
Tot=l 4.7E-01 S1E+00
HQ(NOAEL-Based) i gter ingestion 15E02 1.4E-01
Sediment ingestion S4B 02 12E+00
Aquatic prey ingestion 1.4E+00 2EE+01
Total 1. AE+00 27E+01
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SMDP I at Step 2 of ERAGS

The BTAG considered these results to indicate that inhibition of reproduction was possible in at
least some members of the exposed population, but that the fraction of the population that was affected
and the degree of impact on the population was difficult to judge from the point estimate calculations.
Based on this, a decision was made to conduct a screening level PRA in order to provide some additional
information on the magnitude and probability of risk.

Workplan 1

The contractor performing the risk assessment developed a brief workplan that proposed an
approach for a screening level PRA. The plan called for a Monte Carlo-based evaluation of variability in
exposure and risk among different members of the exposed mammalian omnivore (racoon) population.
In brief, all exposure inputs that were treated as constants in the point estimate approach (i.e., were the
same for CTE and RME exposure) were also treated as constants in the PRA evaluation. Because water
contributed so little to dose or HQ, this pathway was not evaluated in the PRA, but was accounted for by
adding in the point estimate values to the PRA results. All variables that are fractions (i.e, may only
assume values between zero and one) were modeled as beta distributions, and all other variables were
modeled as lognormal. For screening purposes, the parameters for all distributions were selected so that
the mean and 95" percentile values of the PDF's matched the corresponding CTE and RME point
estimates. The BTAG reviewed this proposed approach and authorized PRA work to begin.

Screening Level PRA Results

The screening level PRA inputs and the resulting estimates of the variability in HQ are shown in
Exhibit 4-11. The CTE and RME point estimates are also shown for comparison. As seen, the PRA
distribution of HQ values indicates that about 68% of the individuals in the population are likely to have
HQ values below 1E+00, while 32% have HQ values above 1E+00.

Comparison of the CTE point estimates of HQ to the mean HQ values derived by PRA reveals
the values are very close. This is expected because both depend on the mean values of the input
variables, and the same mean values were used in both sets of calculations. With regard to upper-bound
estimates, the RME point estimate values are at the 98" percentile of the PRA HQ distribution, within the
target range (90" to 99™) usually considered appropriate. Note, however, that the 98" percentile is about
5-fold higher than the 95" percentile, emphasizing the high sensitivity of the RME HQ values to the
precise percentile of the RME.
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EXHIBIT 4-11

SCREENING LEVEL PRA CALCULATIONS OF HQ DISTRIBUTION

Screening Lewvel D istribution
[ ata Categony Wariable U nits Type param 1 param 2
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Fraction of diet that = sed -- Beta 3 Hor
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100%
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TR Bazis Mean of PRA Foint Est CTE R atio 95th of PRA| Point Est. RMWE Ratia
NOAEL 1.494 1.42 0.2 5.4 274 5.05
LOAEL 0.2 0.7 0.29 1.80 2.1z 5.05
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SMDP 2

The BTAG considered these results, and decided that it was very probable that pesticide X was
causing an effect in some members of the exposed population, but decided that a final risk management
decision would be facilitated by characterizing the distribution of responses (rather than the distribution
of HQ values). The BTAG asked the contractor performing the work to develop a proposed approach for
characterizing the distribution of responses.

Workplan 2

The contractor obtained a copy of the toxicity report upon which the TRVs were based, and
determined that the study did include sufficient dose-response data to support reliable dose-response
modeling. The contractor recommended that this be done using EPA's BMDS. The BTAG approved this
proposed approach and authorized work to proceed.

PRA Refinement 1

The contractor fit the raw dose-response data (inhibition of reproduction in mink) to a number of
alternative models available in BMDS, and found that the dose-response curve could be well
characterized by the Hill Equation with nonconstant variance, as follows:

Mean Response at dose d (% decrease in reproduction)=(100 x d*°)/(0.9>° + d*?)
Std. Dev. in Response at dose d (%)=SQRT[1.6:(mean response at dose d)'~]

Based on this model, the point estimate LOAEL value (0.6 mg/kg-day) corresponds to an effect level of
about 27%, and the NOAEL of 0.2 mg/kg-day corresponds to an effect level of about 2%.

Using this exposure-response model in place of the point-estimate TRV values, the refined PRA
predicted a distribution of responses in the exposed population as shown in Exhibit 4-12. As seen,
approximately 81% of the population was predicted to experience an effect on reproduction smaller than
10%, while 9% were expected to have a reduction of 10 to 30%, 4% a reduction of 30 to 50%, and 6% a
reduction of more than 50%. On average across all members of the exposed population, the predicted
reduction in reproductive success was about 9%.
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EXHIBIT 4-12

SIMULATED DISTRIBUTION OF RESPONSES

Exposure Resporse Model
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SMDP3

The BTAG debated the likely population-level consequences of this predicted distribution of
responses in members of the exposed population. After consulting with a field biologist with experience
in the population dynamics of mammals such as racoons, the BTAG decided that the distribution of
responses in the exposed population would cause a continued stress on the mammalian omnivore
community and that reductions in population number were likely over time. Based on this, the risk
manager and the BTAG agreed that remedial action was desirable and that a range of alternative clean-up
strategies should be investigated. This was performed using the methods described in Chapter 5 (see
Exhibit 5-5).
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CHAPTER S

PROBABILISTIC RISK ASSESSMENT AND
PRELIMINARY REMEDIATION GOALS

5.0 INTRODUCTION

According to the National Contingency Plan
(NCP) (U.S. EPA, 1990a, 40CFR §300.430(d)(4)), risk
assessment and risk management decision making go
hand-in-hand: data from the remedial investigation are
used to characterize risk, and results of the baseline risk
assessment help to establish acceptable exposure levels
for use in developing remedial alternatives. In practice,
risk managers may identify two major objectives of risk
assessment: (1) to determine if remediation is necessary
(i.e., Is there unacceptable risk at the site?); and (2) if
remediation is necessary, to determine a preliminary
remediation goal (PRG) (i.e., What chemical
concentrations would result in a risk estimate that will
be adequately protective of human health and the
environment?). The answer to the first question (is there
unacceptable risk?) depends upon a number of factors,
including the measured or estimated concentration levels
of contaminants in site media, and takes uncertainty in
the measurements into account. In contrast, the answer
to the second question (what is the PRG needed to
achieve a specified level of protection?) does not
necessarily depend on any knowledge of the actual level
or pattern of site-specific concentration data, and does
not necessarily depend on the uncertainty in site
concentration data. Thus, while exposure point
concentrations (EPCs) and PRGs are closely related to
each other, they have important differences (see
Section 5.1 for further elaboration on EPCs and PRGs).

Once a risk manager has selected a PRG at a
site, determining whether a particular area meets or will
meet the PRG requires careful comparison of site data
with the PRG, including a consideration of the
uncertainty in the site data. For a further discussion on
variability and uncertainty in the concentration term,
readers are urged to consult Appendix C in this
guidance.

EXHIBIT 5-1

SUMMARIES OF SOME KEY TERMS

Preliminary Remediation Goal (PRG) - initially
developed chemical concentration for an
environmental medium that is expected to be
protective of human health and ecosystems. PRGs
may be developed based on applicable or relevant
and appropriate requirements, or exposure scenarios
evaluated prior to or as a result of the baseline risk
assessment. (U.S. EPA, 1991a).

Generic PRG - a chemical concentration protective
of human health developed prior to the baseline risk
assessment that uses default exposure assumptions
representing common exposure scenarios, e.g.,
Region 3 risk-based concentrations (RBCs) or
Region 9 PRGs.

Site-specific PRG - site-specific chemical
concentration, protective of human health and
ecosystems, based on exposure scenarios in the
baseline risk assessment. Generally calculated for
the various exposure scenarios considered in the
baseline risk assessment.

Remediation Goals (RG) - site-specific chemical
concentration, protective of human health and
ecosystems, chosen by the risk manager as
appropriate for a likely land use scenario.

Remediation Action Level (RAL) - the
“not-to-exceed” level; a concentration such that
remediation of all concentrations above this level in
an exposure unit lowers the EPC sufficiently to
achieve a target risk level. The RAL will depend on
the mean, variance, and sample size of the
concentrations within an exposure unit as well as
considerations of short-term effects of the chemicals
of concem.

Cleanup Level (Final Remediation Level) -
chemical concentration chosen by the risk manager
after considering both RGs and the nine remedy
selection criteria of the NCP (U.S. EPA, 1990a).
Also referred to as Final Remediation Levels (U.S.
EPA, 1991a), chemical-specific cleanup levels are
documented in the Record of Decision (ROD). A
cleanup level may differ from a PRG because risk
managers may consider details of the site-specific
exposure, various uncertainties in the risk estimate,
and implementation issues (e.g., the technical
feasibility of achieving the PRG).
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EXHIBIT 5-2

DEFINITIONS FOR CHAPTER 5

95% UCL for mean - The one-sided 95% upper confidence limit for a population mean; if a sample of size (1) was repeatedly
drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the time. It is a measure
of uncertainty in the mean, not to be confused with the 95" percentile (see below), which is a measure of variability. As
sample size increases, the difference between the UCL for the mean and the true mean decreases, while the 95" percentile
of the distribution remains relatively unchanged.

95™ Percentile -The number in a distribution that is greater than 95% of the other values of the distribution, and less than
5%of the values. When estimated from a sample, this quantity may be equal to an observed value, or interpolated from
among two values.

Applicable or Relevant and Appropriate Requirements (ARARSs) - Federal or state environmental standards; the NCP states
that ARARSs should be considered in determining remediation goals. ARARs may be selected as site-specific cleanup
levels.

Backcalculation - A method of calculating a PRG that involves algebraic rearrangement of the risk equation to solve for
concentration as a function of risk, exposure, and toxicity.

Bootstrap Methods - Parametric and non-parametric methods for estimating confidence intervals for a statistic by resampling
directly from the data set with replacement.

Coverage - Confidence intervals are expected to enclose a true but unknown parameter according to a specified probability,
such as 90% or 95%. This is the expected coverage of the confidence interval, given a specified significance level (alpha).
The difference between the expected coverage and the actual coverage is one metric for evaluating statistical methods that
yield different confidence intervals.

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an exposure
unit. Estimates of the EPC represent the concentration term used in exposure assessment.

Exposure Unit (EU) - For Superfund risk assessment, the geographical area about which a receptor moves and contacts a
contaminated medium during the period of the exposure duration.

Forward Calculation - A method of calculating a risk estimate that involves the standard arrangement of the risk equation to
solve for risk as a function of concentration, exposure, and toxicity.

Iterative Reduction (IR) - A method of calculating a PRG that involves successively lowering the concentration term until the
calculated risk is acceptable. This method can be applied to any medium.

Iterative Truncation (IT) - A method of calculating a PRG that involves developing an expression for the concentration term
in which higher values of concentration are removed or “truncated” to reduce the maximum concentration, and
re-calculating risks associated with the reduced concentration. The method may be repeated with consecutively lower
truncation limits until risk is acceptable.

Land Method - The conventional method for calculating uncertainty in the mean concentration (e.g., 95% UCL) when the
sample data are obtained from a lognormal distribution (U.S. EPA, 1992).

Maximum Detected Concentration (MDC) - The maximum concentration detected in a sample.

True Mean Concentration - The actual average concentration in an exposure unit. Even with extensive sampling, the true

mean cannot be known. Only an estimate of the true mean is possible. A greater number of representative samples
increases confidence that the estimate of the mean more closely represents the true mean.
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Two Office of Solid Waste and Emergency Response (OSWER) guidance documents in preparation:
(1) Draft Guidance on Calculation of Upper Confidence Limits for Exposure Point Concentrations at Superfund
Sites (U.S. EPA, 2001a), and (2) Draft Guidance on Surface Soil Cleanup at Superfund Sites: Applying Cleanup
Levels (U.S. EPA, 2001b), also address topics related to the calculation of EPCs and comparison of those EPCs
to a PRG.

In practice, calculations of risks, given concentration data, are commonly referred to as “forward
calculations”, while calculations of PRGs, based on chosen target risk levels, are referred to as “back-
calculations”. This terminology reflects the algebraic rearrangement of the standard risk equation needed to
solve for the concentration term when point estimates are used to characterize exposure and toxicity input
variables. For probabilistic risk assessment (PRA), the process for developing a PRG can be more complex.
This chapter presents methods and recommendations for developing site-specific PRGs within the framework of
PRA.

Are there different types of PRGs?

Generic PRGs have been developed for some chemicals and exposure media using point estimates based
on standard default exposure assumptions (e.g., U.S. EPA, 1991b) and toxicity criteria available in the Integrated
Risk Information System (IRIS) or Health Effects Assessment Summary Table(s) (HEAST) or from
Environmental Protection Agency’s (EPA’s) National Center for Environmental Assessment. Soil Screening
Guidance levels, Region 9's PRG table and Region 3's Risk Based Concentrations (RBCs) table are examples of
generic point estimate PRGs. Generic PRGs are often used for screening chemicals of potential concern in Data
Evaluation and Hazard Identification steps of the risk assessment process.

w  There is a clear distinction between generic PRGs, site-specific PRGs,
remediation goals (RGs), and cleanup levels. The focus of this chapter is on
site-specific PRGs.

At this time, EPA does not recommend the use of PRA to develop generic PRGs. Until the science and
policy decisions associated with the use of default assumptions in PRA have evolved, generic PRGs should only
be developed from point estimate methods, as was done in the examples listed above.

As indicated in Exhibit 5-1, site-specific PRGs generally are developed after the baseline risk assessment.
However, during the feasibility study or even later in the Superfund process, the methods described in this
chapter may be used to modify cleanup levels at the discretion of the risk manager. However, it is generally not
appropriate to use PRA for modifying cleanup levels during the feasibility study if PRA was not used in the
baseline risk assessment.

& Risk-based PRGs are initial guidelines and do not represent final cleanup levels.

Only after appropriate analysis in the remedial investigation/feasibility study (RI/FS), consideration of
public comments, and issuance of the record of decision (ROD) does a RG become a final cleanup level. A
cleanup level may differ from a RG because risk managers may consider various uncertainties in the risk
estimate. While the two main criteria for determining a cleanup level are: (1) protection of human health and the
environment, and (2) compliance with applicable or relevant and appropriate requirements (ARARS), a cleanup
level may differ from the RG because of modifying criteria, such as feasibility, permanence, state and community
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acceptance, and cost effectiveness. These and other factors are reflected in the nine evaluation criteria outlined
in the NCP (U.S. EPA, 1990a; 40CFR §300.430(e)(9)(iii)) (see Chapter 1, Exhibit 1-2).

This chapter and Appendix C provide a comprehensive description of the issues associated with
developing site-specific PRGs with both point estimate and probabilistic approaches, including the use of
geostatistics. Because methods for calculating a 95% upper confidence limit for the mean (95% UCL) are
discussed fully in the Draft Guidance on Calculation of Upper Confidence Limits for Exposure Point
Concentrations at Superfund Sites (U.S. EPA, 2001a) and Draft Guidance on Surface Soil Cleanup at Superfund
Sites: Applying Cleanup Levels (U.S. EPA, 2001b), they are covered only briefly in this guidance. In general,
this chapter, Appendix C, and the Superfund guidance under development should be consulted by risk assessors
when developing site-specific PRGs.

5.1 GENERAL CONCEPTS REGARDING EPCs AND PRGS

PRGs developed from point estimate risk assessments and PRAs will be discussed in this section to
compare and contrast the two approaches. The PRG is a special case of the concentration term (or EPC) in the
risk equation. The intent of the EPC is to represent the average chemical concentration in an environmental
medium in an exposure unit (EU) (i.e., the area throughout which a receptor moves for the duration of exposure).
The EPC should be determined for individual EUs within a site. Because an EPC is calculated from a sample,
there is uncertainty that the sample mean equals the true mean concentration within the EU; therefore, to account
for associated uncertainty, the 95% upper confidence limit for the mean (95% UCL) is generally used for
Superfund risk assessments (U.S. EPA, 1992). For both point estimate and probabilistic approaches, the PRG is
an assumed value of the EPC that yields a risk estimate that is at or below an acceptable risk level.

1w The EPC usually represents the average concentration within the EU estimated
from a sample; the PRG usually represents the average concentration within the
EU that corresponds to an acceptable level of risk.

The PRG may be thought of as a goal for the post-remediation EPC (see Section 5.1.2). Specifically,
after remediation is completed, the average concentration (or the 95% UCL used as a measure of uncertainty in
the average) for the EU should be sufficiently low to be protective of human health and the ecosystem. While the
methods used to calculate the pre- and post-remediation EPC may differ, the interpretation of the EPC remains
constant. For example, if the 95% UCL is used to represent the EPC before remediation, then the EPC following
remediation (e.g., the PRG) should also represent a 95% UCL (Bowers et al., 1996).

Risk assessors may consider both variability and uncertainty in the development of an EPC. The
calculation of a 95% UCL generally requires knowledge of not only chemical concentration measurements within
the EU but also the receptor’s behavior. Relevant information may include the variability in concentrations in the
given sample, the sampling locations, and variability in the movement and activity patterns of receptors within
the EU. A discussion of spatial and temporal variability associated with characterizing contamination in different
exposure media is presented in Appendix C, and important sources of uncertainty in the EPC are discussed in
Section 5.1.1.

For all risk assessments, chemical concentration measurements should be collected in a manner that is
consistent with an understanding of both the source of contamination and the definition of the exposure unit. An
investment of time and resources should be made in planning, scoping, and problem formulation. Part of this
investment is to follow the Data Quality Objectives (DQO) process to obtain samples appropriate for the risk
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assessment and sufficient to support the remedial decision (U.S. EPA, 1993, 1994, 2000). Using new methods of
sample collection and analysis such as dynamic workplans and real-time analysis may enable risk managers to get
the most “bang for the buck” from the resources available for site characterization. Information about these
methods and the DQO process is available from EPA's Office of Emergency and Remedial Response (U.S. EPA,
2001¢) and Technology Innovation Office (U.S. EPA, 2001d, 2001e). The world wide web address is
http://clu-in.org/char]l edu.cfm#syst plan.

5.1.1 SoURCES OF UNCERTAINTY IN THE EPC

The 95% UCL is generally used as the EPC to represent uncertainty in the mean concentration in both
the central tendency exposure (CTE) and reasonable maximum exposure (RME) risk estimates for Superfund
(U.S. EPA, 1992). Similarly, in PRA, a probability distribution for uncertainty may be used in a two-dimensional
Monte Carlo analysis (2-D MCA) simulation (see Appendix D) to represent a source of uncertainty in the EPC.
There are numerous potential sources of uncertainty in the estimate of the true mean concentration within the EU.
The sources of uncertainty when the EPC is expressed as either a single number or a distribution are the same and
can be grouped into the following four broad categories:

(1) Uncertainty in the sample data. A limited number of measurements in the sample are used to make
inferences about the EPC and the spatial distribution of concentrations at a site. Uncertainties may
arise from many factors, including both sampling variability and measurement error. As the number
of samples increases, the uncertainty generally decreases (e.g., more information will be available to
characterize the spatial distribution and variation in concentration). In point estimate risk
assessments, the 95% UCL is generally used as the EPC to account for the uncertainty in estimating
the average concentration within an EU.

(2) Uncertainty about the location of the EU. When the size of a receptor’s EU is less than the size of
the site, the placement of the EU may be a source of uncertainty, especially when the contamination
is distributed unevenly across the site and the PRA includes exposure scenarios for future land uses.

(3) Uncertainty in the behavior of the receptor. Even in the case of extremely well characterized sites,
it remains uncertain whether the receptor will contact the environmental medium in a temporal
and/or spatial distribution that can be adequately represented by the environmental samples collected.

(4) Uncertainty in chemical concentrations over time. The concentration in a given medium may
undergo temporal changes, which may introduce uncertainty in estimates of a long-term average.
Examples include the movement or attenuation of a solvent plume in groundwater; aerobic or
anaerobic degradation; the change in the average concentration in a fish population due to changes in
population dynamics; and the mixing of surface and subsurface soil over time.

A lack of knowledge in all four categories may be considered when selecting approaches to quantify
uncertainty in the concentration term. One of the first steps in quantifying uncertainty is to define the EU, or the
geographical area in which individual receptors are randomly exposed for a relevant exposure duration.
Depending on the receptor’s movement and activities, an EU may be as small as a child’s play area (e.g.,
sandbox) or as large as the foraging area of an upper trophic level animal predator (e.g., an entire military base).
The relationship between the size of the EU, the movements of the target receptor, and health endpoint of
concern (i.e., acute or chronic) may dictate the appropriate use of sample data in developing an EPC. One of the
assumptions generally made for the concentration term in Superfund risk assessment is that receptors contact all
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parts of an EU at random, and that measurements are obtained from a simple (or stratified) random sample. If an
individual is randomly exposed within the same EU over a long period of time, the most appropriate metric for
the EPC would be the true (but unknown) population mean of the concentrations within the EU (e.g., 95% UCL).

Often, the scale of the EU will be different (smaller or larger) than the scale of the sample data. For
example, an ecological receptor population may have a small home range relative to the size of the entire site, or
the endpoint of concern may be acute toxicity, requiring an evaluation of a short-term exposure scenario. If the
receptors are not expected to contact all parts of the site with equal probability, then the EU may be redefined so
that only a subset of the data collected for site characterization are used to estimate the EPC. In addition, the
location of the EU may be unspecified within the site because there may be multiple areas that provide suitable
habitat for the receptor population. Departing from the assumption of random exposure within one unique
geographic area presents an additional challenge to estimating an EPC. In some cases, it may be informative to
develop multiple estimates of the EPC in a PRA. By treating the EPC as a random variable, risk assessors can
explore the effect of uncertainty in the location of the EU. A variety of modeling approaches are available to
calculate an EPC (e.g., arithmetic mean, or 95% UCL) based on the spatial variability in chemical concentrations
measured over an area larger than the EU. Methods such as geostatistics (see Section 5.5.2 and Appendix D),
Microexposure Event Modeling (MEE) (see Appendix D), and random walk scenarios (Hope, 2000, 2001) may
be used to quantify both the spatial and temporal variability in exposure to varying concentrations. Using these
methods, risk assessors may redefine the EU to be more representative of the random movement of the receptor
during the period of exposure. Because these modeling approaches may be considered more advanced methods
for quantifying the EPC, they are generally considered in Tier 3 of the PRA process (see Chapter 2).

5.1.2 PRE-AND PoST-REMEDIATION EXPOSURE POINT CONCENTRATIONS

The differences between pre- and post-remediation EPCs are discussed below. In general, both estimates
of the EPC are based on the same concepts regarding the exposed population and the definition of the EU.
However, the post-remediation EPC will tend to yield lower estimates of (post-remediation) risk and can require
more advanced methods for calculating uncertainty (e.g., 95% UCL).

The pre-remediation EPC is determined based on existing site sampling at the time of the remedial
investigation, prior to remediation. By contrast, the post-remediation EPC generally is determined based on a
prediction of site conditions after remediation. For example, in surface soil, the post-remediation EPC can be
determined by substituting the nondetect level (generally, half the laboratory reporting limit) for some of the high
concentrations in the sample and recalculating the EPC. The underlying assumption in calculating a post-
remediation EPC is that remediation will have sufficiently reduced the chemical concentrations at the site, and
the risk existing after remediation is complete will be equal to or less than the target risk level of concern.

The preceding discussion is most applicable to surface soil PRGs. In general, compared with other
exposure media (e.g., groundwater, air), surface soil is stationary with relatively constant chemical concentrations
within an EU. For other environmental media, more complex approaches may be needed to estimate the
post-remediation EPC. Modeling of the remediation process may introduce additional uncertainty not
encountered in risk estimates based on the pre-remediation EPC.
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5.1.3 REMEDIATION ACTION LEVELS (RALS) AND 95% UCL CALCULATION METHODS

The EPC should incorporate knowledge about the spatial distribution of contamination, the behavior of
the receptor, the location of the EU, land use, and other factors. These factors affect both the numerical value of
an EPC and uncertainty associated with this estimate. In many cases, it is presumed factors associated with land
use will not change after remediation.

The remediation action level (RAL) is the maximum concentration that may be left in place at any
location within an EU such that the average concentration (or 95% UCL as a measure of the average) will not
present a risk above levels of concern. This RAL may be considered a “not-to-exceed” threshold or action level
for the purposes of site remediation. Using surface soil as an example, areas within the EU that have
concentrations greater than the RAL may be excavated and replaced with clean fill (e.g., nondetect surrogate
values). To obtain a post-remediation EPC, the 95% UCL is calculated after substituting the surrogate nondetect
value for all measurements located within the EU that are greater than the RAL.

When appropriate, the same statistical method of uncertainty should be used to estimate UCLs for both
the pre- and post-remediation EPCs. However, in some instances, the method used for calculating the
pre-remediation EPC will be inappropriate for calculating the post-remediation EPC, because the distribution of
contaminant concentration will have changed. For example, pre-remediation site sampling may suggest that
variability in concentrations can be reasonably characterized by a lognormal distribution, which would support
the use of the Land method for estimating the 95% UCL. The post-remediation site conditions, however, may
reflect a mixture of clean fill and contamination, resulting in a poor fit to a lognormal distribution (see
Figure 5-3, Section 5.5.3). In this case, the Land method would not be appropriate. Because of the difference in
the statistical distribution of concentration measurements used to estimate the pre-remediation EPC and post-
remediation EPC, a non-parametric (i.e., distribution free) method should be considered for calculating
uncertainty in the average concentrations in both pre- and post-remediation scenarios. In general, when the
method used to calculate the 95% UCL for a post-remediation scenario is different than that of the pre-
remediation scenario, the 95% UCL for the pre-remediation scenario should be recalculated with the post-
remediation method. Results of this change in methodology can be presented as part of a quantitative uncertainty
analysis. Specifically, this recalculation will allow for an evaluation of the effect that a RAL has on the
confidence interval for the mean. The discordance between pre- and post-remediation distributions can be
expected to increase as the degree of remediation needed to achieve a target risk level of concern increases.

In general, risk assessors should be aware of the practical and statistical issues associated with the
various methods of calculating the 95% UCL, and the application of these methods to both the pre- and post-
remediation concentration distribution. Different methods can yield very different confidence intervals, some of
which are expected to yield more accurate coverage (i.e., likelihood that the confidence interval includes the
parameter) depending on characteristics of the underlying distribution of concentrations, such as distribution
shape, sample size, and variance (Gilbert, 1987; Hall, 1988). Information about a variety of parametric and non-
parametric methods, such as bootstrap resampling, can be found in The Lognormal Distribution in Environmental
Applications (U.S. EPA, 1997), Estimating EPCs When the Distribution is Neither Normal nor Lognormal
(Schulz and Griffin, 1999) and a Superfund guidance document currently under development, Draft Guidance on
Calculation of Upper Confidence Limits for Exposure Point Concentrations at Superfund Sites (U.S. EPA,
2001a).
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5.1.4 CONSIDERATION OF RiSK FROM ACUTE ToXxICITY

Sometimes a risk assessment will need to address more than one health endpoint of concern (e.g., cancer
and noncancer). The RAL should be sufficiently low so that it is simultaneously protective of each endpoint of
concern. Generally, when acute toxicity is a concern, the long-term average concentration across the entire EU
may not be the appropriate metric for assessing risks. For example, a single episode of a child ingesting a
handful of soil containing malathion may result in an acute toxic effect to that child. Therefore, the RAL must
not only be low enough to reduce the post-remediation EPC to acceptable long-term average levels, but also low
enough that acute toxicity will not be an issue. This consideration applies to both point estimate and probabilistic
estimates of PRGs.

1= For consideration of acute toxicity, the risk assessor should consult, as
appropriate, with a toxicologist in the development of RALs.

For a small number of chemicals, toxicity values have been determined based on acute effects (e.g., nitrate in
drinking water). However, at present, EPA does not have acute toxicity criteria or guidance on acute toxicity
applied to the RAL. Hence, consultation with a toxicologist is vital.

5.1.5 CHARACTERIZATION OF UNCERTAINTY IN THE EPC: POINT ESTIMATES AND DISTRIBUTIONS

In point estimate risk assessments, the 95% UCL is typically used to characterize uncertainty in the EPC
(U.S.EPA, 1992). In PRA, either a point estimate (e.g., 95% UCL) or a probability distribution may be used to
characterize uncertainty in the concentration term. The probability distribution may characterize either
variability or uncertainty. The terms probability distribution for variability (PDFv) and probability distribution
for uncertainty (PDFu) can be used to distinguish between probability distributions for variability and
uncertainty, respectively.

The decision to use a point estimate, PDFv, or PDFu, as the input for the concentration term in a Monte
Carlo model will depend on the goals of the Monte Carlo simulation, as determined by the tiered process (see
Chapter 2). If the goal is to characterize variability in risk, in general, a one-dimensional Monte Carlo analysis
(1-D MCA) will be used and the appropriate input for the concentration term will be a point estimate that
characterizes uncertainty in the mean concentration within the EU. As explained in Section 5.1.1, risk assessors
will need to consider the relationship between the size of the EU, the movements of the target receptor, and
health endpoint of concern (i.e., acute or chronic) to determine how to use the available sample data to define the
EPC. A PDFu is typically not an appropriate choice for the concentration term in a 1-D MCA when the goal is to
characterize variability in risk. Mixing of a PDFu for the concentration term with PDFv’s for other exposure
variables in 1-D MCA would yield a single risk distribution from which the relative contributions of variability
and uncertainty could not be evaluated. Use of a PDFu for the concentration term may be considered in
2-D MCA simulations (see Appendix D), where the goal may be to characterize both variability and uncertainty
in risk.

When the sample size is small and the variance is large, the 95% UCL may exceed the maximum
detected concentration (MDC). In such a case, the MDC is generally used to estimate the EPC, although the true
mean may still be higher than this maximum value (U.S. EPA, 1992). For poorly characterized sites, there may
be considerable uncertainty that site remediation will be sufficient to reduce the 95% UCL to a health-protective
level. Poor site characterization may provide an impetus for the risk manager to opt for a more health-protective
remedial alternative or to collect additional data.
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To ensure that actual cleanup based on a RAL is protective generally requires post-remediation
confirmation sampling. This step in the risk management process is emphasized further in Section 5.8 on
measurement of attainment.

5.1.6 MuLTIPLE CHEMICALS

Developing PRGs for multiple chemicals in one or more environmental media is particularly challenging.
When multiple chemicals are present, the total risk level should be considered for regulatory purposes with each
chemical contributing a portion of the total risk. This issue is quite complex and usually will affect both the
calculation of the risk and development of site-specific PRGs. Chemicals may exhibit different spatial and
temporal variability within the EU. Fate and transport characteristics may vary between chemicals as well as
between different areas of the site. Co-located sampling, or geostatistical techniques (e.g., co-kriging) may
provide insights regarding relationships in spatial patterns for different chemicals (see Appendices C and D) and
the corresponding exposures for receptors.

5.2 WHEN TO USE PRA FOR DEVELOPING PRGS

Because point estimate risk assessments and PRA employ different approaches to characterize variability
and uncertainty, the resulting RME risk estimates and calculations of PRGs are often different. The magnitude of
the difference can depend on many factors, including the number of input variables described with probability
distributions in the PRA, the choice of distributions used to characterize variability or uncertainty (especially for
those variables that are highly ranked in a sensitivity analysis), the percentile of the probability distribution that
corresponds with RME point estimate for each input variable, and the choice of percentile from the PRA used to
represent the RME risk (e.g., 95" percentile). Since the results of a point estimate approach and PRA can be
expected to differ, but the magnitude of the difference is not known a priori, this can present a challenge in
deciding whether or not to conduct a PRA to develop a PRG. The potential advantages and disadvantages of both
the point estimate approach and the PRA can be factored into the decision (see Chapter 1, Exhibits 1-6 and 1-7).

In general, PRA may be appropriate for developing site-specific PRGs in cases where PRA has also been
used to estimate site-specific risks. As indicated by the tiered approach (see Chapter 2), if the risk manager
determines that quantifying variability and uncertainty may enhance risk management decision making, PRA may
be warranted. If a PRA is feasible, the risk manager should proceed to Tier 2 and employ PRA to complete the
RI/FS process. Usually, embedded in a site-specific PRG are all of the exposure assumptions and toxicity
metrics used in the risk assessment. Hence, introducing the use of PRA for PRGs in the feasibility study (or any
time after the remedial investigation and baseline risk assessment are complete) would, in effect, undermine the
tiered approach.

1= [f only point estimates were used in the risk assessment, probabilistic methods
should not be used for PRG development.

If additional data have been collected to conduct PRA, the point estimate risk assessment should be
revisited with the new data as well. As discussed in Chapter 2, a point estimate risk assessment (Tier 1) should
always accompany a PRA. PRA is intended to enhance risk management decision making, and should not be
viewed as a substitute for point estimate approaches. Using the tiered approach, a risk assessor can determine the
appropriate level of complexity that is supported by the available information to conduct the risk assessment and
to calculate a PRG.
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5.3 METHODS FOR DEVELOPING PRGS

Risk assessors may use PRA to quantify sources of uncertainty and variability in the calculation of PRGs
as well as risks. Two of the common methods for calculating PRGs in PRA include: (1) backcalculation (see
Section 5.4), which is equivalent in concept to the point estimate calculation of a PRG; and (2) iterative forward
calculation methods, including iterative reduction and iterative truncation (see Section 5.5). Backcalculation can
be used in PRA when the target risk and concentration terms are expressed as point estimates. Iterative methods
can be more involved, but unlike backcalculation, there are no constraints on their application to PRA. The two
approaches yield the same result when the same assumptions are used in the risk assessment.

54 BACKCALCULATION

Traditionally, risk is calculated as a function of multiple exposure variables, including the concentration
term, and toxicity value (Equation 5-1). If one or more of the exposure variables is described by a PDF, a Monte
Carlo simulation will yield a distribution for risk (see Chapter 1).

Backcalculation methods can be envisioned as setting a target risk level (e.g., RME risk equal to 107 or
Hazard Index equal to 1) and then algebraically reversing the risk equation to solve for the concentration term
(Equation 5-2). A Monte Carlo simulation using Equation 5-2 will yield a distribution of concentrations that
reflects the combination of distributions from all other exposure variables.

C'w fRw BEFy ED

= [frtake
DWW x AT e L
Intakew Toxicity = Risk quation >-
O V= Risk
'= Risk « V_l Equation 5-2
where,
Toxicity = toxicity term representing either the cancer slope factor (CSF) or reference dose

(1/RfD) for the chemical in the exposure medium
C = concentration term

V = algebraic combination of the toxicity term with all exposure variables except C
IR = ingestion or inhalation rate

AT = averaging time

BW = body weight

ED = exposure duration

EF = exposure frequency

This calculation produces a distribution of PRGs that represents the same sources of variability as a
forward calculation of risk. Each percentile of the PRG distribution (i.e., the o percentile) corresponds to the
1-o percentile from the distribution of risk estimates. For example, if the 95" percentile of the distribution of risk
estimates was chosen to represent the RME individual, the 5™ percentile (1-0.95=0.05) would be the
corresponding concentration value from the distribution of PRGs (Bowers, 1999). The correspondence between
the risk distribution and the PRG distribution is intuitive—just as selecting a higher percentile on the risk
distribution is more protective, a lower percentile on the PRG distribution is more protective. The RME range
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for the risk distribution 90" to 99.9" percentile is analogous to an RME range for the PRG distribution of
0.1%to 10" percentile.

Backcalculation has been a familiar method of developing PRGs and may be appropriate in some
situations for the sake of clarity and transparency due to the general understanding of this method among risk
assessment practitioners. Once a backcalculation has been performed to determine a PRG, the PRG should be
used as the concentration term in a forward calculation to ensure that the risk at the PRG is acceptable.

5.4.1 DIFFICULTIES WITH BACKCALCULATION

There are limitations in the use of backcalculation in PRA (Ferson, 1996). Simple rearrangement of
Equation 5-1 does not suffice when the variable (i.e., the concentration or risk term) that is backcalculated is
represented by a probability distribution (Burmaster et al., 1995; Ferson, 1996). The difficulty for PRA arises
because each risk estimate from an MCA that uses the familiar “forward-facing” risk equation represents a
combination of random values selected from the input distributions. Therefore, the output can be considered
conditional on all of the inputs. Rearranging the risk equation does not maintain the same conditional
probabilities; therefore, the distribution for risk estimated as a function of the distribution for concentration in
Equation 5-1 does not return the same distribution for concentration when applied in Equation 5-2. While there
are techniques that can maintain the dependencies and correlations between exposure factors when the risk
equation is rearranged (e.g., deconvolution), they are complex and beyond the scope of this guidance.

Backcalculation methods may also be difficult to implement in situations in which complex
fate-and-transport considerations are present. Leaching of soil contamination to groundwater, bioconcentration
of chemicals at higher trophic levels, and other multimedia processes that result in exposure via several
environmental media are situations in which backcalculation may not be useful. Note that these difficulties are
not unique to backcalculation. Uncertainty in fate-and-transport considerations makes any type of PRG
determination challenging.

Further, the backcalculation approach only provides information on the EPC that corresponds to a risk
level of concern; it does not specify an RAL that would achieve this EPC. For example, when a risk equation is
algebraically solved for concentration (see Equation 5-2), a PRG is developed without a corresponding RAL.
Thus, there is no information associated with the PRG value to indicate the highest concentration in the EU that
must be removed so that the average concentration (or 95% UCL) within the EU is at or below the PRG. Hence,
additional efforts are needed. In addition, post-remediation concentrations may need to satisfy more than one
regulatory constraint. For example, the average (or 95% UCL) concentration within an EU may need to be less
than a concentration associated with chronic toxicity or cancer and simultaneously, the RAL concentration may
need to be less than a concentration that might cause acute toxicity.

In spite of these caveats, backcalculation methods may be appropriate for some sites. For example, when
the target risk is specified by a single numerical value and the risk manager has chosen a percentile of variability
to represent the RME individual, then a backcalculated PRG can be derived from a PRA.

Although backcalculation methods may be appropriate for some sites, risk assessors should be familiar
with their limitations. Because of these limitations, this guidance recommends iterative forward calculations as
the primary method for calculating PRGs when performing a PRA. Iterative methods avoid difficulties
associated with applying MCA to a backcalculation, and can provide more information for the risk manager.
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5.5 ITERATIVE METHODS

Iterative methods simply involve 2.5
calculating risk with the “forward-facing” y=0.0014z+0.0515
equation (see Equation 5-1) a number of 20 4 Fi=[ 0045
times (iteratively) using progressively lower
values for the concentration term until the
risk is sufficiently protective. This iterative
method has also been called the “repeated
runs” method. Note that iterative methods
for calculating a PRG are not uniquely
applicable to PRA. Iterative methods also
may be used to develop PRGs in point
estimate risk assessments.
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for calculating PRGs from probabilistic risk
assessments.

Figure 5-1. A hypothetical example of the use of iterative methods to
determine the EPC that corresponds with a target RME Hazard Index (HI)

_MOSt often, iterative forward of 1.0. Assume that the EPC is represented by the 95% UCL and the
calculations are performed using a RME HI is the 95" percentile of the output distribution. In this case, four
systematic trial-and-error method until the separate Monte Carlo simulations were run with iteratively decreasing
percentile of variability in risk chosen to values for the EPC. The least-squares, best-fit line to these four data

represent the RME individual is at or below points suggest that a reasonable PRG would be approximately 660 ppm.
acceptable risk levels. Sometimes, a short

cut can be used to reduce the number of simulations needed with the trial-and-error method. If successive
“guesses” of the EPC are plotted with the corresponding risk estimate, the exact solution can be determined from
the best-fit line, thereby significantly reducing the effort required to implement this method. An example is given
in Figure 5-1. For many risk equations, the relationship between the EPC and the RME risk will be
approximately linear. Nevertheless, the final estimate of the EPC should be checked by running another
simulation for risk with this estimate.

A possible and significant advantage of iterative forward calculations over back-calculations is that the
method is intuitive and yields a distribution of risks rather than a distribution of PRGs (as with a back-calculation
method). The distribution of risks will be more familiar to the public and other stakeholders, and thus, both the
method and the resulting output may be easier to communicate to senior level managers and stakeholders (see
Chapter 6).

Two general types of iterative methods are described in more detail in Sections 5.5.1 and 5.5.2. The
main difference between the methods is in the interpretation of the concentration term that is being reduced.
With iterative reduction, the concentration is assumed to be the post-remediation EPC, whereas with iterative
truncation, it represents the RAL needed to achieve a post-remediation EPC.
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5.5.1 ITERATIVE REDUCTION

Iterative reduction can be applied to any medium. Generally, a point estimate representing the EPC (e.g.,
95% UCL) is successively lowered, each time repeating the Monte Carlo simulation of variability in risk. When
the EPC is reduced until the endpoint of concern (e.g., RME risk corresponding to the 95" percentile) is at or
below an acceptable level of risk, the PRG is set at the corresponding EPC. The goal is to identify the point
estimate that corresponds to a target risk level. Note that the PRG is not the same as the RAL. The RAL is the
maximum concentration that may be left in place within an EU to achieve the PRG.

The concentration at which the risk is acceptable defines the PRG. Therefore, the PRG bears the same
uncertainties as the EPC. For example, assume that a risk assessor examined the carcinogenic effects from
chronic consumption of a chemical in groundwater, then the exposure unit may be determined by the long-term
average concentration at any well that potentially draws drinking water from the contaminated groundwater.
Uncertainty in the long-term average concentration can reflect a number of factors that contribute to spatial and
temporal variability, including the direction of groundwater flow, natural attenuation, and other fate and transport
variables. Remediation by a pump-and-treat system for a prolonged period of time may be used to lower the
concentrations at the wells. Even though the remediation strategy may be complicated by spatial and temporal
variability, iterative reduction can be used to establish a PRG. A remediation strategy may be considered a
potential candidate if it can achieve the PRG by reducing the average concentration at each of the well locations.
The concept of “hot-spot” removal, or truncation of the highest concentrations first, would not be an option under
this scenario (see Section 5.5.2).

5.5.2 ITERATIVE TRUNCATION

Iterative truncation is a method of calculating a PRG that involves developing an expression for the
concentration term in which higher values of concentration are removed or “truncated” to reduce the maximum
concentration. These higher values are replaced by the surrogate nondetect value. The risk is recalculated for
each successive reduction in the highest value. The method is repeated with consecutively lower truncation
limits until risk is acceptable.

Iterative truncation is most applicable to surface soil cleanup as the spatial variability over time is
minimal compared to other media (e.g., surface water). With each iteration of the risk equation (e.g.,
Equation 5-1), the highest concentration value is truncated corresponding to a different RAL. In this way
a“‘not-to-exceed” level is specified and the PRG is recalculated the same way in each iteration. The process
continues until the risk distribution yields risk estimates at or below the level of concern.

Iterative truncation can be applied to either the empirical distribution function (EDF) for the
concentration term, or a fitted distribution for variability in concentrations within the EU. Applied to the EDF,
the maximum detected concentration within the EU is replaced with a surrogate value for a nondetect (e.g., half
the reporting limit or the background value for some chemicals), and the EPC (e.g., 95% UCL) is recalculated for
this altered data set. If this new EPC yields unacceptable risk, then the two highest detected concentrations are
replaced by the nondetect value and the EPC is recalculated. In the third iteration, the three highest detections
are replaced, and so on, until the target risk level is achieved. Alternatively, the sample data may be fit to a
probability distribution for variability, and the process would be repeated with decreasing values in the high-end
tail of the continuous distribution.
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When the concentration term is a distribution representing uncertainty in the mean concentration, then,
similar to the recalculation of the point estimate 95% UCL described above, this distribution of uncertainty in the
mean concentration should be determined anew each time a datum is replaced with the nondetect value.

When a distribution of variability in concentration is used for the EPC, for example, in an ecological risk
assessment where sampling may be sparse relative to the foraging area of a small home range receptor (see
Appendix C), then the distribution developed in an identical way with the high values replaced by the surrogate
nondetect value should be used in the iterative determination of a PRG.

The decision to apply iterative truncation should be made after considering a variety of characteristics of
the sample data and post-remediation scenario (see Exhibit 5-3). For example, small sample size may result in

high uncertainty in the 95% UCL, thereby limiting the
use of iterative truncation. Quantitative criteria regarding
these factors are not provided in this guidance given that
the level of certainty required for decision making will
vary on a case-by-case basis. Use of geostatistical
methods (Appendices C and D) may aid in interpreting
site data or improving sampling design. Geostatistics is
capable of describing the spatial distribution of a
contaminant in a quantitative fashion. These methods
establish a correspondence between the actual sampling
locations and the locations a receptor would be expected
to frequent. Additionally, it enables the estimation of
concentrations in unsampled locations. Hence, for
determination of concentrations at specific locations at a
site or within EUs of various sizes and shapes,
geostatistics may provide an invaluable tool.
Geostatistics has applications both to developing the EPC
and PRG and has been recommended and used at some
sites for characterization of soil and groundwater
contamination (U.S. EPA, 1990b, 1991¢).

Although the consideration and use of
geostatistics is encouraged, a full consideration of
geostatistics is beyond the scope of this guidance. Those
interested in greater detail than provided in Appendices C
and D are urged to consult the Superfund guidance
document currently under development, Draft Guidance
on Surface Soil Cleanup at Superfund Sites: Applying
Cleanup Levels (U.S. EPA, 2001b), for additional
discussion of how geostatistics can be used to quantify
the concentration term or the PRG.

Generally, iterative truncation methods fail to
produce adequate cleanup strategies when site

EXHIBIT 5-3
CRITERIA FOR ITERATIVE TRUNCATION

Sample size (n) is sufficient. Small
sample sizes lead to large estimates of
uncertainty in the concentration term.
Small sample size may cause the risk
assessor to overlook some sources of
uncertainty.

Concentration distribution is not highly
skewed. A highly skewed distribution
may yield unreliable estimates of
uncertainty, especially for small sample
sizes.

Sampling design yields a representative
distribution of measurements within the
exposure unit. Simple random sampling
may fail to represent a patchy spatial
distribution of contaminants. Similarly,
hotspot (e.g., cluster) sampling may fail to
represent random movement of receptors.
To evaluate potential biases in sampling,
analyses with both standard statistical
methods and geostatistical methods may be
required.

Assumptions about the post-remedial
distribution of concentration are
reasonable. If these assumptions are
shown to be incorrect by subsequent
sampling events, the process for
developing a PRG may need to be repeated
and additional remedial activities may be
required.
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characterization is incomplete. This problem, however, is not specific to PRA. Both point estimate and
probabilistic methods are sensitive to poor site characterization.

Risk assessors should realize that application of iterative truncation may result in areas on-site that have
concentrations higher than the PRG. This is because the PRG will reflect an average concentration (or
95% UCL) from a distribution of concentrations in which the maximum is truncated at the RAL. For example,
Figure 5-3 (see Section 5.5.3) shows how the concentration distribution can be truncated at an RAL, while still
leaving behind concentrations greater than the PRG.

5.5.3 EXAMPLE OF ITERATIVE METHODS

The iterative truncation method is easiest to think about with regard to soil cleanup when contaminated
soil is removed and replaced with clean fill soil. This replacement would reduce both the mean and 95% UCL.
In most cases, risk assessors may assume that the concentrations of chemicals in clean fill soil can be represented
by the surrogate nondetect value (e.g., half the detection limit). Alternatively, the fill may be sampled so that the
measured concentrations in the fill dirt may be used to calculate the post-remediation concentration term.
Generally, metals and other inorganic chemicals will be present in clean fill, albeit at lower concentrations than
on site.

A simple example using the 95% UCL as a point estimate for the EPC is given in Exhibit 5-4. In this
example, background concentrations of chemical X were very low and hence, the fill was assumed to have a
concentration of half the detection limit. The risk management objective is to identify a PRG in which the 95"
percentile risk estimate is below 1E-04 and to determine the RAL necessary to achieve this PRG. This example
illustrates how iterative truncation is applied to the empirical distribution function, rather than fitting the
concentrations to a parametric distribution.

Assume that iterative reduction of the 95% UCL demonstrated that a post-remediation EPC of no greater
than 33 mg/kg is needed to achieve a RME risk of 1E-04. What is the RAL that yields this EPC? The risk
assessor recognizes that the post-remediation concentration distribution is very often a mixed distribution,
consisting of a group of nondetect values and a truncated parametric distribution. Because of the complex nature
of mixed distributions (Roeder, 1994), non-parametric methods for calculating the 95% UCL of the arithmetic
mean (e.g., bootstrap resampling) were determined to be appropriate (U.S. EPA, 1997; Section 5.1.3).
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EXHIBIT 5-4
EXAMPLE OF ITERATIVE METHODS

Scoping and Problem Formulation

Chromium contamination was present at a 12-acre industrial facility. In scoping and problem
formulation, all stakeholders agreed that the facility would maintain itself and the current land use
would continue into the foreseeable future. Most of the facility area was maintained as green space
and as a buffer with the surrounding community. Surrounding the facility to the fence line were lawns
and ornamental shrubs tended by landscape workers. These landscape workers were considered to be
the high risk group as they would move freely and randomly over the entire area of the facility outside
the buildings. Hence, the landscape workers would be exposed to an average concentration over the
entire area of the facility outside the buildings. The management of the facility was very cooperative
and concerned about their workers. Nonetheless, the facility management did not wish to bear more
cost than necessary.

Site Characterization - Soil Sample (n=70)

Seventy surface soil samples were obtained using a sampling grid placed over all 12 acres. Five
or six sampling locations were placed in each acre. None of the samples was composited. The
grid-based sampling permits a rough estimation of the percentage of the site that would need active
remediation. The detection limit for the chromium was 1 mg/kg. Four of the samples were
nondetects. Sampling results are shown in Table 5-1. Although the samples from the site appeared to
occur in a lognormal distribution (Figure 5-2), the presumed post-remediation distribution would be a
mixed distribution, consisting of a truncated lognormal distribution and a group of data at the
surrogate nondetect value.

Figure 5-2. Lognormal probability plot of soil
concentrations, including 4 nondetects.

Table 5-1. Soil sample (n=70) (mg/kg).
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In this example, a series of iterative truncations showed that removal of all sample results greater than
100 mg/kg (n=11) and replacement of these with the nondetect surrogate of 0.5 mg/kg yielded a 95% UCL of
33 mg/kg and RME risk below 1E-04. Table 5-2 summarizes the results of the calculations for the three
conditions: (1) pre-remediation concentrations; (2) post-remediation concentrations using iterative truncation to
achieve an RAL of 100 mg/kg; and (3) post-remediation concentrations assuming the 95% UCL calculated is
used as the RAL. Note that if the PRG of 33 mg/kg was applied as a “not-to-exceed” level (i.e., RAL), the
resulting remediation effort would increase from 15 to 40% of the site, yielding a 95% UCL of 14 mg/kg. While
this would be a protective decision, other information was used to support the selection of the second scenario
instead. A toxicologist was consulted, who indicated that acute exposure to the workers at levels of 100 mg/kg
would not present a health risk. To build additional protectiveness into the remedy, the management also
indicated scheduling for the landscape workers would be performed so the areas tended would be rotated among
all the workers.

Table 5-2. Pre- and Post-Remediation EPCs (95% UCLs) for Chemical X in Surface Soil Samples.

Remediation Scenario RAL (mg/kg) EPC (mg/kg) Percent of Site to be
95% UCL Remediated

1. Pre-remediation NA 93 NA

2. Post-remediation using the PRG as 100 33 15%

the 95% UCL

3. Post-remediation using the PRG as 33 14 40%
the RAL (i.e., “not-to-exceed”)

NA=not applicable for a pre-remediation scenario.

Figure 5-3 shows a conceptual framework for considering the post-remediation distribution as a mixture
between a group of nondetects and a distribution of contamination truncated at the RAL. Prior to remediation,
the EPC exceeds a level that would be protective of human health and ecosystems. If the high-end soil
concentrations are removed and the soil is replaced with clean fill, the resulting distribution will be bimodal, with
one peak occurring at the nondetect concentration, and the second occurring near the mean of the post-
remediation distribution.

5.5.4 MuLTIPLE EXPOSURE UNITS AND ITERATIVE METHODS

When multiple EUs are present at the site, there may be a small number of samples within a given EU
and the uncertainty in the concentration term generally will be large. It may be possible to use knowledge of the
mechanism of how the contamination occurred along with spatial patterns in the sampling results in other nearby
EUs to quantify uncertainty. Geostatistical techniques for estimating the mean concentration may provide useful
insights into the importance of accounting for spatial relationships among the sample data. Appendix C also
provides a discussion of the situation of multiple EUs within a larger site.
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Figure 5-3. Hypothetical example of a mixed, bimodal distribution that represents a combination of the pre-
remediation distribution truncated at the remediation action level (RAL) and a uniform distribution representing
clean fill at the surrogate nondetect concentration. Shaded portions represent equal areas. In this example, the
PRG is defined by the post-remediation EPC (95% UCL).

5.6 PRGS FOR GROUNDWATER

For some chemicals encountered at hazardous waste sites, chemical-specific ARARs may exist, and may
be considered as PRGs. ARARs may be selected as site-specific cleanup levels. The maximum contaminant
levels of the Safe Drinking Water Act are examples of ARARs.

= For groundwater contamination, ARARs should be applied as RALs if they are
protective.

Of course, for cases in which an ARAR is less protective than a remediation goal determined from a risk
assessment, then a risk-based PRG may be developed in accordance with the NCP (U.S. EPA, 1990a).

As an exposure medium, groundwater is the opposite of soil in that groundwater is not static, and
receptors are usually exposed at one location (i.e., the well head). Often, a single well can be considered the EU
when assessing risks associated with either the residential or industrial/occupational scenarios. The EPC may
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still reflect the concept of averaging over a long time period (e.g., years) due to potential changes in
concentrations in well water over time. For example, chemical fate and transport modeling may suggest that
concentrations are decreasing over time. Similarly, there may be temporal and spatial variability depending on
the seasonal fluctuations of the water table. Ideally, the risk assessment would focus on individuals who may be
exposed at locations nearest to the center of the contaminant plume, where concentrations are likely to be highest
(Freeze and Cherry, 1979; Sposito, et al., 1986).

Because of the uncertainty in the movement of groundwater and the necessity of sampling the medium at
fixed locations, identifying a meaningful RAL needed to achieve a given PRG is difficult. In most cases, ARARs
will be applicable as RALs or “not-to-exceed” levels.

5.7 PRGS FOR OTHER CONTAMINATED MEDIA

Iterative truncation techniques are generally applied to a static medium, such as soil, rather than dynamic
or fluid media such as water and air. This is simply because it is difficult to design a method that will selectively
remove high concentrations from a fluid medium. Iterative reduction may be more relevant than iterative
truncation when an RAL cannot be developed. These issues are discussed below with respect to sediment,
surface water, and fish.

Sediment

Sediment may be transported over time more readily than soils. If it can be assumed that the sediment
remains in place, then iterative truncation techniques may be applied. However, at some sites, sediment may be
considered a fluid medium. For example, sediment may be resuspended by the movement of water craft, waves,
changing tides, or erosion. Similarly, the depth of the contaminated sediment may change over time as new
layers of sediment are deposited above more contaminated sediment.

Exhibit 5-5 gives an example of the use of iterative truncation to evaluate alternative RALs for sediment
of a lake contaminated by pesticide runoff. In this example, the RAL is related to both the ecological endpoint of
concern (i.e., reduction in reproductive success of mammalian omnivores at the lake) and the fraction of areal
extent of the lake that would require remediation at that RAL.
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EXHIBIT 5-5

EVALUATION OF ALTERNATIVE RALS USING ITERATIVE TRUNCATION

Risk=to a population of mammalian omnivores residing near a lake contaminated with pesticide
"W were judgedto be sufficiently high that a reduction in population number over tim e was
expected (zee Chapter 4, Exhibit 4-12). The primary reservoir of pesticide X inthe lake iz
zediment. The BTAG commiftes decided to use the iterative truncation method to estimate the
benefidal effects ofa series ofdifferent Remedial Action Levels (RALs). PR A was uszed to predict
the diztribution of responzes (percent reduction in population suoccess) and the areal extent of the
lake requiring remediation as a function of AL . The results are summarized below.

RAL in Feduction in R eproductive Success Fraction
Sediment Mean Qth 9&th of Lake
Mone 3.9% % 29% 0%
100 ppm T E% 249 43% 3%
80 ppm 7.0% 2% 45% 5%
B0 ppm 5.9% 18% 369 8%
40 ppm 4.4% 12% 2E% 16%
20 ppm 1.9% 4.7% 10% 3T

The BTAG reviewed these results and conduded that while an RAL of 20 ppm would be needed to
provide nearly com plete protection of the exposed population, an B AL of 40 ppm would pravide a
good reduction in effect lewvel while tending to minimize the areal exent ofthe lake that required
remediation, which in turn would tend to minimize disturbance of the ecoszystem during
remediation. Baszed on thizg, the risk manager identified 40 ppm asthe RAL and initiated a
feasibilty study to investigate ways of achieving this ohjedive.

0.045
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Biota (Fish, Aquatic Invertebrates, Plants)

Biota, such as fish, aquatic invertebrates, and plants can serve as bioindicators or indirect estimators of
contamination in other exposure media that would be targets for remediation. The concentration of chemicals
fish may reflect a combination of exposures via sediment, the water column, and food source (e.g., prey).
Therefore, the use of bioindicators to develop PRGs in other media introduces a sources of uncertainty. If there
is a high correlation between concentrations in fish and sediment, then sediment concentrations may be
considered when developing PRGs to protect the receptor population. The EU, in this case, is the area where the
angler population, or ecological predator population, harvests fish. However, in risk assessments that include a
fish ingestion exposure pathway, there may be high uncertainty about the true concentration term.
Concentrations may be affected by many factors, including changes in the fish population and changes in fish
preferences, which may be difficult to address in risk assessments. The choice of fish species consumed by a
given individual may also affect the concentration term.

Fish population studies and fate and transport considerations of the contaminants may indicate if and
when a fish population will reach a calculated cleanup level. For many sites, it may be difficult to obtain this
level of site-specific data due to resource and time constraints.

Although remediation may not immediately reduce contaminant concentrations in biota, the
determination of a cleanup level can serve as a target for any future decline in concentrations. In general,
iterative reduction methods are applicable for developing PRGs to protect aquatic ecosystems; however, under
some conditions iterative truncation may also be used. For example, if contamination is correlated to relatively
static sediment, and the home-range of the fish is relatively small (e.g., nonmigratory) then iterative truncation
may be applicable.

Surface Water

The development of PRGs for surface water is also difficult with iterative truncation. For fluid media
(e.g., groundwater or surface water), iterative reduction can be performed using a range of EPCs to determine a
PRG with acceptable risk at the target RME percentile.

5.8 MEASUREMENT OF ATTAINMENT

The NCP (U.S. EPA, 1990a) provides for continued monitoring for groundwater cleanups to ensure
attainment of the remedial action objectives. In addition, it is common practice among remedial project managers
to conduct confirmation sampling after completing a remedy for soil contamination. However, completion of the
remedial action according to this strategy does not necessarily mean that risks within EUs at the site have been
reduced to levels specified in the ROD. The degree of uncertainty about whether the remedial action at the site
has achieved the cleanup level should determine whether confirmation sampling is warranted. In general,
confirmation sampling following cleanup activities is recommended. Sampling after the remedial investigation is
complete may show additional areas needing remediation (i.e., where additional contamination exists).

If additional sampling is conducted after the remedial investigation, the concentration term and
corresponding estimates of risk should be recalculated. The PRG developed in the remedial investigation may
not be health-protective in light of the additional contamination. The same concepts that relate the concentration
term to the PRG should be applied in this situation.
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Confirmation sampling activities are included in remedial design/remedial action plans to ensure the
remedy is successful. In addition, the five-year review presents a second opportunity to ensure that any
contamination left on site does not pose an unacceptable risk.

= [f confirmation sampling indicates an insufficient reduction in risk, a more
extensive remediation effort may be needed. Possible reasons for not achieving
remedial action objectives can include inadequate site characterization or the

discovery of unknown contamination.

For post-remediation sampling, the DQO process should generally be followed. If the post-remediation
risk associated with the confirmation sample indicates risk exceeds a level of concern, then additional

remediation may be warranted.
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5.9 SUMMARY OF RECOMMENDED METHODS

Table 5-3 summarizes the possible methods for developing PRGs for various environmental media. It
should be noted that iterative reduction (IR) can be used in all cases, whereas iterative truncation (IT) is limited
to situations where the highest concentrations can be identified and removed. Backcalculation may be applicable
in all cases, but because of caveats noted in Section 5.4.1, iterative approaches are generally recommended in this

document.

Table 5-3. Summary of Potential Methods for PRG Development by Environmental Medium.

Potential Exposure Back- Iterative Iterative Explanations for IT
Medium calculation Reduction Truncation
(IR) (IT)

Soil X X X Applicable if soil is relatively fixed.

Sediment X X X Applicable if sediment is relatively fixed.
In some situations, sediment transport may
be a better assumption due to current
velocity, tides, resuspension, etc.

Biota (Fish, Aquatic X X SA Depends on home-range of fish relative to

Invertebrates, Plants) - the scale of the sampling design. If

bioindicators of contamination is correlated to relatively

contamination in static sediment, and the home-range of the

sediment fish is relatively small (e.g., non-migratory)
then IT may be applicable.

Surface Water X X NA Not applicable as surface water is a fluid
medium.

Groundwater (GW) X X NA Not applicable as GW is a fluid medium.
Generally, ARARs must also be satisfied.

Home-grown produce, X X SA Depends on relative contributions of soil

milk, livestock, other uptake (applicable) vs. foliar deposition (not

food items applicable).

X=applicable
NA=not applicable
SA=sometimes applicable
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CHAPTER 6

COMMUNICATING RISKS AND UNCERTAINTIES IN
PROBABILISTIC RISK ASSESSMENTS

6.0 INTRODUCTION

The Environmental Protection Agency (EPA) has developed a guidance document, Risk
Assessment Guidance for Superfund: Volume I-Human Health Evaluation Manual, Supplement to Part
A: Community Involvement in Superfund Risk Assessments (U.S. EPA, 1999a) and two videotapes,
“Superfund Risk Assessment and How You Can Help, An Overview” (10 minutes) (U.S. EPA, 1999b) and
“Superfund Risk Assessment and How You Can Help” (40 minutes) (U.S. EPA, 2000b), to improve
community involvement in the Superfund risk assessment process. The videotapes (available in both
English and Spanish) show examples of how regions have involved communities in the risk assessment
process at several Superfund sites. The guidance document and videotapes, along with the Superfund
Community Involvement Handbook and Toolkit (U.S. EPA, 1998), should serve as a primary community
involvement resource for risk assessors and remedial project managers (RPMs). The Handbook and
Toolkit offers the following specific guidance:

* Provides suggestions for how Superfund staff and community members can work together
during the early stages of Superfund remedial investigation and feasibility study (RI/FS) and
later cleanup

* Identifies where, within the framework of the human health risk assessment methodology,
community input can augment and improve EPA’s estimates of exposure and risk.

* Recommends questions the site team (risk assessor, RPM, and community involvement
coordinator [CIC]) should ask the community.

* Illustrates why community involvement is valuable during the human health risk assessment
at Superfund sites.

This chapter provides guidance and suggestions on how to deal with risk communication issues
that arise during a probabilistic risk assessment (PRA). Specifically, the concepts of uncertainty and
variability may present additional communication challenges for PRA. For example, whereas
discussions of uncertainty for point estimate risk assessments are often qualitative in nature, PRA opens
the floor for discussion and presentation of quantitative uncertainty analysis. Concepts associated with
quantitative characterizations of uncertainty may be more difficult to communicate and may not be well
received due to stakeholder desires for certainty (Slovic et al., 1979). As such, this chapter highlights
appropriate stakeholder involvement and principal risk communication skills that are effective for
communicating PRA concepts and risk information. Key factors for successful communication of PRA
include early and continuous involvement of stakeholders, a well-developed communication plan, good
graphics, a working knowledge of the factors that may influence perceptions of risk and uncertainty, and
a foundation of trust and credibility.
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EXHIBIT 6-1

DEFINITIONS FOR CHAPTER 6

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Community Advisory Group (CAG) - A group formed to provide a public forum for community members to present and
discuss their needs and concerns related to the Superfund decision-making process. A CAG serves as the focal
point for the exchange of information among the local community, EPA, State regulatory agency, and other
pertinent Federal agencies involved in the cleanup of a Superfund site.

Community Involvement Coordinator (CIC) - As a member of the CAG and site team, the CIC coordinates
communication plans (i.e., the CIP) and addresses site-specific CAG organizational issues.

Community Involvement Plan (CIP) - A plan that identifies community concerns and the preferences of the community
for the communication of site-related issues.

Confidence Interval - A range of values that are likely to include a population parameter. Confidence intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95 percentile risk).
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty in
the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches. For
example, given a randomly sampled data set, a 95% confidence interval for the mean can be estimated by deriving
a sampling distribution from a Student's t distribution.

Credible Interval - A range of values that represent plausible bounds on a population parameter. Credible intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95 percentile risk).
The term is introduced as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches.
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to describe a range of possible
values for the arithmetic mean.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable. Each value ¢ of the function is the probability that a random
observation x will be less than or equal to c.

Hazard Quotient (HQ) - The ratio of estimated site-specific exposure to a single chemical from a site over a specified
period to the estimated daily exposure level, at which no adverse health effects are likely to occur.

Hazardous Substance Research Centers (HSRC) - Research centers providing free technical assistance to communities
with environmental contamination programs through two distinct outreach programs: Technical Outreach Services
for Communities (TOSC) and Technical Assistance to Brownfields Community (TAB).

Histogram - A graphing technique which groups the data into intervals and displays the count of the observations
within each interval. It conveys the range of values and the relative frequency (or proportion of the sample) that
was observed across that range.

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - A technique for characterizing the uncertainty and
variability in risk estimates by repeatedly sampling the probability distributions of the risk equation inputs and
using these inputs to calculate a distribution of risk values. A set of iterations or calculations from Monte Carlo
sampling is a simulation. For example, a single iteration for risk from ingestion of water may represent a
hypothetical individual who drinks 2 L/day and weighs 65 kg; another iteration may represent a hypothetical
individual who drinks 1 L/day and weighs 72 kg.

Parameter - A value that characterizes the distribution of a random variable. Parameters commonly characterize the
location, scale, shape, or bounds of the distribution. For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds].
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate).

Percentile - A number in a distribution such that X % of the values are less than the number and 1-X % are greater. For
example, the 95" percentile is a number in a distribution such that 95% of the values are less than the number and
5% are greater.
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EXHIBIT 6-1

DEFINITIONS FOR CHAPTER 6— Continued

Point Estimate Risk Assessment - A risk assessment in which a point estimate of risk is calculated from a set of point
estimates for exposure and toxicity. Such point estimates of risk can reflect the CTE or RME, depending on the
choice of inputs.

Potentially Responsible Party (PRP) - Individuals, companies, or any other party that is potentially liable for
Superfund cleanup costs.

Preliminary Remediation Goal (PRG) - Initially developed chemical concentration for an environmental medium that
is expected to be protective of human health and ecosystems. PRGs may be developed based on applicable or
relevant and appropriate requirements (ARARs), or exposure scenarios evaluated prior to or as a result of the
baseline risk assessment. (U.S. EPA, 1991a, 1991b).

Probabilistic Risk Assessment (PRA) - A risk assessment that yields a probability distribution for risk, generally by
assigning a probability distribution to represent variability or uncertainty in one or more inputs to the risk
equation.

Probability Density Function (PDF) - A function or graph representing the probability distribution of a continuous
random variable. The density at a point refers to the probability that the variable will have a value in a narrow
range about that point.

Rank Correlation (Spearman Rank Order Correlation Coefficient) - A “distribution free” or nonparametric statistic »
that measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989). The intent of the RME is to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of
contamination, to evaluate potential risk, and to develop alternatives for cleanup.

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the
values of the model’s input(s). Sensitivity analysis can provide a quantitative ranking of the model inputs based
on their relative contributions to model output variability and uncertainty. Common metrics of sensitivity
include:

»__ Pearson Correlation Coefficient - A statistic » that measures the strength and direction of linear association
between the values of two quantitative variables. The square of the coefficient () is the fraction of the
variance of one variable that is explained by the variance of the second variable.

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called
elasticity.

»  Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic » that
measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables. See Pearson (above) for 7.

Stakeholder - Any individual or group who has an interest in or may be affected by EPA’s site decision-making
process.

Technical Assistance Grant (TAG) A federal grant that is intended to provide a community with the opportunity to
hire independent experts to help evaluate and explain the results of a risk assessment.

Technical Outreach Services for Communities (TOSC) - A service of the HSRC with the aim to provide independent

technical information and assistance to help communities with hazardous substance pollution problems.
Uncertainty - Lack of knowledge about specific variables, parameters, models, or other factors. Examples include
limited data regarding the concentration of a contaminant in an environmental medium and lack of information
on local fish consumption practices. Uncertainty may be reduced through further study.
Variable - A quantity that can assume many values.
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Section 6.1 discusses the need for early and continuing stakeholder involvement. Section 6.2
recommends a seven-step process for communicating PRA results to stakeholders, and Sections 6.3
and 6.4 provide guidance on specific techniques for communicating information. The success of risk
communication efforts will depend on the extent to which the communication strategy addresses the
needs of a diverse audience, with different perceptions of risk and uncertainty (Section 6.5), and the
degree of trust and credibility that is established from the outset of the process (Section 6.6).

Section 6.7 provides a discussion of risk communication issues that are uniquely relevant to RPMs.

6.1 STAKEHOLDER INVOLVEMENT

Many stakeholders may be interested in a
risk assessment (see Exhibit 6-2). It is generally
important to involve and engage interested
stakeholders early and continuously throughout
the decision-making process (U.S. EPA, 2001).

Public involvement activities should be
tailored to the needs of the community and
described in the site communications strategy.
The CIC should coordinate these first steps
through the development of a Community
Involvement Plan (CIP). Coordination between
the RPM, risk assessor, and CIC is needed to
determine the appropriate points in the RI/FS
process to communicate with the community, and
plan for the appropriate level of communication.
The CIP should identify community concerns and
the preferences of the community for the
communication of site-related issues. The CIP
may be updated during the RI/FS as needed.

Examples of outreach activities include

EXHIBIT 6-2

STAKEHOLDERS POTENTIALLY INVOLVED IN THE
DECISION-MAKING PROCESS FOR PRA

EPA risk assessors and managers
Members of the public

Representatives from state or county
environmental or health agencies

Other federal agencies (e.g., health agencies,
Natural Resources Damage Assessment
(NRDA), trustees, etc.)

Tribal government representatives

Potentially responsible parties (PRPs) and their
representatives

Representatives from federal facilities (e.g.,
Department of Defense, Department of Energy,
etc.)

giving oral presentations and poster sessions at public meetings, coordinating group meetings or focused
workshops, conducting interviews with community members on specific issues, and distributing fact

sheets.

Ideally, the public and other interested stakeholders would be involved early in the site-specific
decision-making process. If the community has not been previously involved, efforts should be made, in
coordination with the CIC, to identify and communicate with the appropriate individuals in the
community prior to the Agency’s receipt of the PRA workplan. The public and other stakeholders should
be given the opportunity to provide input to the workplan for a PRA (see Chapter 2, Section 2.1).

The initial community meeting can serve to establish a rapport between EPA and the community
and facilitate the exchange of information needed to support a PRA. This information may include
policy decisions associated with both point estimate and probabilistic approaches, as well as technical
details regarding the conceptual exposure model and the selection of distributions. A discussion of these
topics may increase certainty about the assumptions made in the risk assessment. For example, the
community may be able to offer insights regarding site-specific activities and sources of exposure data
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not readily available to the risk assessor. This type of discussion should allow for the free exchange of
information with the public and sets the stage for future discussions. It is important that an appropriate
level of detail be presented at the first meeting. Instead of overloading the audience with information, it
is generally better to coordinate several meetings so that complex policy and technical concepts can be
broken down into smaller discussion topics.

Following the approval of the PRA workplan, the public and other interested stakeholders should
be involved in various stages of the PRA development, including providing and/or reviewing data,
reviewing the selected distributions (e.g., selected creel survey) and commenting on PRA documents as
appropriate during public comment periods. On-going community involvement may require
consideration of EPA’s resources including the availability of personnel and contractor support. Other
considerations include EPA’s compliance with provision in the National Contingency Plan (NCP) for
involving the community. The appropriate level of community involvement in the PRA should be based
on a number of factors including the nature and extent of contamination at the site, the expressed
interests of the community members, the complexity of the PRA, and the role of PRA in site-specific
remediation or cleanup decisions.

6.2 COMMUNICATION AND PRESENTATION

Communication is a two-way process that should involve the transfer of information between the
Agency and the stakeholders, as well as active listening by the Agency to the stakeholder’s ideas and
concerns. The goals of risk communication are to present risk information in an understandable manner
through an open, honest, frank, and transparent presentation and discussion of risks, including
uncertainties. In meeting these goals, it is important that the RPMs and risk assessors be sincere and
direct in their presentation of the results of the PRA, accept the public and other interested stakeholders
as valuable contributors to the process, and listen to the concerns and ideas that are raised.

One goal of communication should be to respect the stakeholder’s concerns. The public and
other interested stakeholders should have the opportunity to understand the PRA and its effects on the
decision-making process. Technical Assistance Grants (TAGs) may be one way to advance this goal by
providing the community the opportunity to hire independent experts to help evaluate and explain the
results of the PRA. Alternatively, the RPM and risk assessor may use the tools outlined in Sections 6.3
to 6.6 to present PRA concepts and the results of the PRA to the community in a manner that is easily
understood. This may require significant up-front planning, testing, and post-evaluation to identify the
appropriate messages to communicate and to determine how well this information was communicated.

The site-specific PRA communication plan should be consistent with the NCP’s provisions on
community involvement. It is important to recognize that community involvement is part of a regulatory
process and that EPA generally will consider all timely public input, but may not implement all of it.
Ultimately, EPA must meet the legal requirements of the Superfund law in making decisions regarding
remedial actions.

A vast body of literature exists regarding risk communication. Since the early 1980's, a number
of researchers have developed models for communicating risk to the public. These models are available
in the scientific literature, and a list of supplemental references is provided at the end of this chapter.
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6.2.1 ComMMUNICATION OF PRA WiTH CONCERNED CITIZENS, OTHER STAKEHOLDERS, AND
MANAGERS: AN OVERVIEW

Before the decision to conduct a PRA is made, a CIP should be in place. Generally, when a
decision is made to conduct a PRA, an important step should be to work with citizens to develop a
communication strategy for PRA and its application within the Superfund process (see Chapter 1). The
initial introduction of the community to the RI/FS process should include a discussion of the principles of
risk assessment. This discussion may be best presented in an informal setting such as a public
availability session. Because of the potentially complex nature of PRA and quantitative uncertainty
analysis, a small group meeting may be an appropriate forum in which to discuss issues and facilitate an
exchange of ideas. If there is interest among a large group of stakeholders, multiple small group sessions
may be scheduled. Such meetings may provide the foundation for building trust and credibility (see
Section 6.6).

In general, it is important to identify whether a Community Advisory Group (CAG) should be
formed. The purpose of a CAG is to provide a public forum for community members to present and
discuss their needs and concerns related to the Superfund decision-making process. The CIC is an
important member of the team and may coordinate communication plans, hand-out materials, and address
site-specific organizational issues.

A number of resources may be available to the community to aid in understanding technical
material in a PRA. In addition to the TAG program, which provides funds for qualified citizens’ groups
affected by a Superfund site to hire independent technical advisors, another program is the Technical
Outreach Services for Communities (TOSC), which uses university educational and technical resources
to help communities understand the technical issues involved in hazardous waste sites in their
communities. This is a no-cost, non-advocate, technical assistance program supported by the Hazardous
Substance Research Centers.

The tiered approach for PRA presented in Chapter 2 (Figures 2-1 and 2-2) encourages risk
assessors and RPMs to participate in discussions with stakeholders early in the process of developing
point estimate and probabilistic approaches. If a decision is made to perform a PRA, a continuing
dialogue should be useful to evaluate interim results of the PRA and determine if additional activities are
warranted (e.g., data collection, further modeling). These on-going discussions should help assure that
RPMs are aware of the details of the PRA analysis and are comfortable with the material that will be
shared with the community, other interested stakeholders, and senior managers.
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6.2.2 STEPS FOR COMMUNICATION OF THE RESULTS OF THE PRA

The complexity of a PRA will vary depending on the site-specific nature of the assessment
performed. For example, PRAs may include an analysis of variability, uncertainty, or both. Some
analyses may involve simulations to evaluate temporal variability (e.g., Microexposure Event analysis)
and spatial variability (e.g., geostatistics). The challenge for presenters is to identify the critical
information and level of detail to be presented to various audiences that may be involved in the
Superfund decision-making process (e.g., senior risk managers, concerned citizens, congressional staff,
and PRPs).

The 7-step process, described below (and summarized in Exhibit 6-3), may be repeated many
times during the performance of a PRA. For communication purposes, a PRA normally will involve
more interaction with stakeholders than a
point estimate risk assessment because PRA
concepts and results are often more difficult
to communicate.

EXHIBIT 6-3

IMPORTANT STEPS FOR

(1) Identify the Audience COMMUNICATING PRA RESULTS
The first step should be to identify (1) Identify the audience

the audience of potentially interested (2) Identify the needs of the audience

stakeholders. Strategies for presenting PRA (3) Develop a communication plan

(4) Practice to assure clarity of presentation
(5) Present information
(6) Post-meeting review of presentation and

information normally will be tailored to the
audience. Participants in the audience may
change during the tiered process depending ey Rosdbndlk

on the complexity of the PRA (see Chapter 2) (7) Update information as needed for future
and the specific site-management decisions assessments and presentations

being made.

) Identify the Needs of the Audience

The second step should be to identify the needs of the audience. The relevant information and
the appropriate level of detail will vary depending on the audience. For example, some participants may
be well informed about PRA concepts and will not need much introductory PRA information. For other
audiences, PRA concepts may be new, so it may be beneficial to hold an informal meeting to discuss the
general objectives and methods used to conduct a PRA. Once introductory PRA concepts have been
discussed and are understood by the audience, more advanced discussions may be warranted on topics
such as the sources of data used in the PRA, the most critical variables in the PRA (identified during the
sensitivity analysis), the selection of distributions, and the level of characterization of uncertainty (see
also Section 6.5). The risk assessor should select the key information for each topic and discuss the
significance of this information based on the intended audience.
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3) Develop a Communication Plan EXHIBIT 6-4

The third step should be to develop a plan KEY CONSIDERATIONS IN DEVELOPING

to communicate significant information to the DS AN AT, M ATEEIAL
public in an easily understandable format

(Exhibit 6-4). Adequate planning in the +  Identify main messages

presentation of PRA information is essential. A *  Place information in appropriate context
thorough understanding of the design and results *  Use clear formats

of the PRA will help to place the information in *  Use examples and graphs

*  Provide handouts and glossaries
* Present information with minimum jargon

proper context and understandable format (U.S.
EPA, 1994). Even more importantly, the risk
assessors and RPMs should clearly identify the
main messages to be presented.

Section 6.4 provides examples of graphics that may be useful in presentations of PRA.
Handouts, glossaries, and other materials may complement a presentation and provide information for
discussion following the meetings. In addition, examples designed to help demonstrate concepts unique
to PRA (e.g., using one probability distribution to describe variability and a second distribution to
describe parameter uncertainty) may help facilitate the flow of communication and increase the level of
understanding. One useful technique in public meetings is to involve members of the audience to
illustrate a concept. For example, the topic of discussion may be the method used to select and fit a
probability distribution used to characterize variability in a PRA. To demonstrate this concept, a risk
assessor can draw a bell-shaped curve on a flip chart and label the x-axis, “number of liters of water
consumed per day”, and the y-axis, “number of people who consume a specific amount of water in a
day”. Next, each meeting participant can be asked to identify their own consumption pattern, perhaps by
holding up a 0.5 liter bottle and asking how many such bottles are consumed on an average day. This
community-specific information can then be plotted on a new graph in the form of a histogram and the
bars can be connected to form a curve or distribution similar to the one first drawn. The resulting
distribution (for an example, see Figure 6-1) can then be used to discuss the following PRA concepts in
more detail:

*  Variability (between individuals)

*  Shape of the distribution and plausible range of values

e Central tendency exposure (CTE) and reasonable maximum exposure (RME) estimation

* Uncertainty in the distribution (sample size, potential response bias, differences in activity
patterns)

* Uncertainty in a parameter estimate (difference between the 95% upper confidence limit
(UCL) for a mean and the 95" percentile)

Using this information as a basis, the risk assessor can compare the results from the community
analysis with data from various geographic areas in the U.S. where water consumption patterns may
differ. The risk assessor can then lead a discussion with the community regarding the various sources of
uncertainty in selecting and fitting exposure distributions, including:

(a) Extent of Representation - Are the available data representative of the target population?
For example, would the data on water consumption collected during the meeting be
representative for various population groups?
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(b) Data Quantity - What sample size is needed to develop a distribution? This discussion will
introduce the concept that uncertainty in both point estimates and probability distributions
may be reduced by increasing the sample size

(c) Data Quality - Are the data collected using acceptable study protocols? Is the information
available from the peer-reviewed literature? An example can be made of the data collected
during the meeting to highlight issues associated with survey design, and methods for
controlling for potential bias or error. For example, if the survey data were to be used in a
risk assessment for a drinking water scenario, the data quality may be improved by repeat
sampling over time

Other exposure variables that can be used in this distribution example include: fish consumption
rates, chemical concentrations in soil, and fraction of time spent indoors. In general, examples should
focus on variables that may be of interest, are easily illustrated, and are unlikely to make participants
uncomfortable divulging personal information such as age.

“) Practice to Assure Clarity of Presentation

The fourth step should be to practice the presentation to assure that the information is presented
clearly to the intended audience. Staff from communication groups or public information offices within
EPA regional offices may help to determine whether or not the presentation addresses the needs of
various audiences. Also, practicing the presentation with co-workers who are unfamiliar with the site can
help assure that the appropriate messages are being conveyed, and will help the team prepare for
potential questions that will arise during the meeting.

5) Present Information

A number of factors should be considered when developing a plan to present the PRA in a
meeting. Although the size of the public meeting can sometimes be unpredictable, typically individuals
will feel more comfortable asking questions and expressing opinions in small, informal settings. For any
audience, it is usually helpful to have general fact sheets on PRA available for distribution. The fact
sheets may contain information that describes the PRA process, how information from the PRA will be
used at the site, and how the community may comment on the PRA report. The meeting team should
usually include the CIC, RPM, Risk Assessor, and additional support as necessary.

Audio-visual materials and equipment should be checked prior to the start of the meeting. For
example, overheads should be viewed from the audience seating to assure that information is accessible
and readable. Presentations using portable computers can be effective for showing how the results of the
PRA may differ with changes in modeling assumptions.

(6) Post-meeting Review of Presentation and Community Feedback

At the end of a meeting, it can be helpful to encourage participants to provide feedback regarding
effective and ineffective communication techniques. Not only can this information be used to improve
presentations offered to similar audiences in the future, it also provides a sense for how well the main
messages and specific technical issues were communicated.
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(7) Update Information as Needed for Future Assessments and Presentations

Shortly after the meeting or briefing, modifications should be made to the materials for future
presentations where appropriate. In addition, if information is obtained that is relevant to the risk
assessment, this information may be included in a subsequent analysis, and the process would be
repeated.

6.3 COMMUNICATING DIFFERENCES BETWEEN POINT ESTIMATE AND PRA

One method for effectively explaining the PRA approach to quantifying variability and
uncertainty is to employ comparisons to the more easily understood point estimate methodology. These
comparisons can focus on either the inputs or the outputs associated with the two approaches. The
communicator may focus on a specific input variable, such as drinking water intake, and explain that
with the point estimate methodology, a single average or high-end value (e.g., 2 liters per day for adults)
normally is used to quantify exposure, whereas with PRA, a probability distribution (e.g., lognormal) is
used to characterize variability in exposure among a population. In addition, the outcomes (e.g., cancer
risk estimates) can be compared by showing where the point estimate(s) of risk fall within the
distribution of risks generated with PRA.

When communicating results from point estimate and PRA models, an important concept to keep
in mind is that both methods yield risk estimates with varying degrees of uncertainty. Continuing with
the above example, concepts associated with uncertainty (e.g., representativeness, data quantity, and data
quality) can be introduced by asking the audience if their estimate of water consumption on a specific
day would be equal to their average daily consumption rate over a 1-year period. This example
highlights a common source of uncertainty in exposure data (i.e., using short-term survey data to estimate
long-term behavior). Section 6.5 discusses different perceptions of uncertainty.

It is common to accept output from quantitative models without fully understanding or
appreciating the corresponding uncertainties and underlying assumptions. One challenge in presenting
PRA results is to determine the most effective way to communicate sources of uncertainty without
undermining the credibility of the assessment (see Section 6.6). For example, it may be counterintuitive
that the more sources of uncertainty that are accounted for in a PRA, the wider the confidence intervals
tend to be in the risk estimates (see Section 6.4.2). The audience may question the utility of a method
that appears to introduce more complexity in a risk management decision. It may be useful to point out
that many sources of uncertainty are present, and methods available to acknowledge and quantify them
may differ in point estimate and probabilistic risk assessments.

The basic concepts of PRAs described in Chapter 1 may be used in developing presentations.
Exhibits 1-5 and 1-6 in Chapter 1 summarize some of the advantages and disadvantages of point
estimates and probabilistic approaches that should be considered when evaluating differences in the risk
estimates of the two approaches. For example, point estimates of risk do not specify the proportion of
the population that may experience unacceptable risks. In contrast, PRA methods allow statements to be
made regarding both the probability of exceeding a target risk, and the level of confidence in the risk
estimate.

When summarizing results of PRA, graphs and tables generally should include the results of the
point estimates of risk (e.g., CTE and RME). It may be informative to note where on the risk distribution
each of the point estimates lies. By understanding the assumptions regarding the inputs and modeling
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approaches used to derive point estimates and probabilistic estimates of risk, a communicator will be
better prepared to explain the significant differences in risk estimates that may occur. Special emphasis
should be given to the model and parameter assumptions that have the most influence on the risk
estimates, as determined from the sensitivity analysis (see Appendix A).

6.4 GRAPHICAL PRESENTATION OF PRA RESULTS TO VARIOUS AUDIENCES

Graphics can be an effective tool for communicating concepts in PRA. As the old adage goes,
“A picture is worth a thousand words.” A graphic usually can be most easily understood by a diverse
audience when it conveys a single message. It is generally a good idea to keep the graphics simple so
that the message is clear. In general, each graphic should be developed and modified depending on the
type of presentation and the intended audience.

w  The key to presenting graphics in PRA effectively is to select a relatively small
number of appropriate messages, and to find a balance between meaningful
information and overwhelming detail.

Points to consider when developing graphics for public meetings, senior staff, and the press are
presented below. Certainly, recommendations for presenting clear and informative graphics are
applicable to all three forums. Practical recommendations for graphical analysis techniques and tips for
successful visual displays of quantitative information are given by Tufte (1983) and Helsel and Hirsch
(1993).

6.4.1 PuBLiCc MEETING

For a public availability session (or meeting), care should be taken to assure that the graphics are
of appropriate size and the lettering is easy to read. For example, a graphic onan 8 42 x 11 inch sheet of
paper, or a font size smaller than 18 pt in a computer presentation, may not be easily seen from the back
of a large auditorium. It may be appropriate to present information using large posters, spaced so that the
audience may move among them and discuss the posted results with the risk assessor or RPM. Handouts
and a glossary of terms may also be used. Using slides with too much text should be avoided, since the
information may be difficult to read and understand. Pre-planning and pilot testing the graphics before
the presentation may be helpful in assuring that the message is accurately portrayed to the community.

Consistent with EPA’s guidance on risk characterization, the CTE and RME cancer risks and
noncancer hazards, and EPA’s decision point should be highlighted on graphics. The discussions
accompanying the graph should emphasize that these values represent risks to the average and high-end
individuals, respectively, and serve as a point of reference to EPA’s decision point. The distribution of
risks should be characterized as representing variability among the population based on differences in
exposure. Similarly, graphics that show uncertainty in risk can be described using terms such as
“confidence interval”, “credible interval”, or plausible range. The graphics need not highlight all
percentiles. Instead, selected percentiles that may inform risk management decisions (such as the 5",50",
90", 95*, and 99" percentiles) should be the focus. Figure 6-1 shows an example of a PDF for variability
in risk with an associated text box for identifying key risk percentiles.
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Figure 6-1. Hypothetical PRA results showing a probability density function (PDF) (top
panel) for cancer risk with selected summary statistics for central tendency and high-end
percentiles. This view of a distribution is useful for illustrating the shape of the distribution
(e.g., slightly right-skewed) and explaining the concept of probability as the area under a curve
(e.g., most of the area is below 1E-06, but there is a small chance of 2E-06). Although
percentiles can also be overlayed on this graphic, a cumulative distribution function (CDF)
(bottom panel) may be preferable for explaining the concept of a percentile.
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Figure 6-2 gives two examples of graphics that can be used to display results of a sensitivity analysis
from a Monte Carlo Analysis (MCA). While both graphics are likely to be understood by non-technical
audiences, the pie chart may be more familiar. The pie chart (Figure 6-2A) suggests that the results
should sum to 1.0, which may not be true if there are correlations among one or more variables, or if only
a subset of the variables are displayed (e.g., those that contribute at least 1%). The available data can be
normalized so that the squared correlation coefficients do sum to 100%, and this approach has been
adopted by some commercial software available to run Monte Carlo simulations (e.g., Crystal Ball® by
Decisioneering, www.decisioneering.com). The benefit of showing the squared correlation coefficient
(r* or r-square, also called the coefficient of determination), rather than the correlation coefficient (r) is
that r-square is proportional to the total variation in risk associated with specified input variable.
Therefore, one can use the r-square to describe, in quantitative terms, the contribution of the input
variable to the total variance in the risk distribution. In this example, exposure duration (ED) contributes
approximately two-thirds (64%) to the total variance in risk.

A more technical graphic is the tornado plot (Figure 6-2B). In addition to showing the relative
magnitude of the correlations (r-square), it illustrates the direction of influence a specific variable has on
the final risk estimate. Bars that extend to the right indicate a positive correlation (e.g., high risk
estimates correspond with high values for the variable), whereas bars that extend to the left indicate a
negative correlation (e.g., high risk estimates correspond with low values for the variable.) In this
example, the exposure duration (ED) has the largest positive correlation with risk, while body weight
(BW) has the largest negative correlation with risk.

The graphics shown in this chapter are a small fraction of the graphics that might be used to
communicate concepts related to PRA. Numerous additional examples are given throughout this
guidance document. Table 6-1 provides a summary of cross references to other figures that were
developed for this guidance document to convey specific concepts regarding variability and uncertainty.
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Table 6-1. Examples of Graphics for Communicating PRA Concepts in this Guidance Document.

General PRA Topic Area Location Variability Uncertainty

Conceptual Diagrams for Fundamental Concepts

Monte Carlo Analysis Figure 1-2 X

Tiered process for PRA Figure 2-1, 2-2 X X

PDFs and CDFs

Input variable(s) Figure 1-1, 4-4, 4-5, X
4-6
Risk distribution with selected percentiles Figure 6-1 X
highlighted
Comparing RME risk (e.g., 95" percentile) with Figure 1-3, 4-3, 7-2, X

risk level of concern

Selecting and Fitting Probability Distributions

Fitting distributions - frequency distribution Figure 3-1 X
overlaid by a PDF

Lognormal probability plot Figure 5-2 X

Sensitivity Analysis

Sensitivity analysis - tornado plot of Spearman Figure 3-6, 6-2b X
rank correlations

Sensitivity analysis - pie chart Figure 6-2a X

Joint probability curve Figure 4-8 X

Variability in toxicity

Species sensitivity distribution Figure 4-7 X

Iterative Simulations

CDFs from multiple 1-D MCA simulations to Figure 3-3 X
convey uncertainty in the risk distribution

PRG Selection

Estimation from best-fit line for RME risk and Figure 5-1 X
EPC
RME risk ranges corresponding to alternative Figure 7-4 X

choices of PRG

90% credible interval for RME risk (95™ Figure 7-5 X
percentile) corresponding to alternative choices of
PRG
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Bi-model distribution for concentration showing Figure 5-3 X X
pre-remediation EPC, post-remediation EPC,
remediation action level, and uniform distribution
for clean fill

2-D M CA Results

Illustration of tabular and graphic outputs of a 2-D | Figure 4-9 X
MCA

Confidence intervals (or credible intervals) on a Figure 1-4, 4-10, X
risk distribution 4-11,4-12

Box-and-whisker plot for results of 2-D MCA Figure 3-4, 7-3 X
Horizontal box-and-whisker plots with multiple Figure 6-3 X X
CDFs
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Figure 6-2. Results of a sensitivity analysis shown as a pie chart (A) and tornado plot (B). Both graphics illustrate
the concept of the relative contribution to variance for exposure variables that contribute at least 1% to the variance
in risk. The pie chart suggests that the sum of the squared rank correlations equals 1.0, which is true only if the
results are normalized to 100%. The tornado plot gives both the magnitude and direction (positive or negative) of
the correlation. ED=exposure duration, IR_soil=soil ingestion rate, AF=absorption fraction, EF=exposure
frequency, SA_skin=surface are of skin, and BW=body weight.
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6.4.2 EPA SENIOR STAFF

For communicating PRA with EPA’s senior risk managers (e.g., EPA Section Chiefs, EPA
Branch Chiefs, or EPA Division Directors), an executive summary or executive briefing package may be
appropriate. This presentation should highlight major findings, compare point estimate and probabilistic
results, provide sensitivity analysis results, and state uncertainties addressed in the PRA.
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Hazard Quotient

Figure 6-3. The results of a 2-D MCA. The graphic shows a method of presenting variability as a cumulative
distribution function and uncertainty as box plots at the 25", 50", and 95" percentiles of variability. The CDF of
the 50" percentile is represented by the solid line and the CDFs given by the dotted lines represent the 5™ and
95" percentiles of uncertainty for each percentile of variability.

EPA senior level risk managers would generally be most interested in the risk estimates at the
50™, 90", 95", and 99.9" percentiles (i.e., a CTE risk estimate and the RME risk range). EPA senior
managers may also wish to know the uncertainty surrounding each of the percentiles of risk. This
uncertainty can be described in a table (e.g., confidence intervals around the 95" percentile risk) or a
graphic (e.g., box-and-whisker plots). It is advisable for the risk assessor to have this information on
hand during the briefing to respond to questions. Presenting distributions of uncertainty along with
distributions of variability can create a very busy figure or table—it is best to keep things simple.
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Figure 6-3 shows cumulative distribution functions (CDFs) for the Hazard Quotient (HQ) for a
single chemical, representing variability in HQ. One method of displaying uncertainty is to use
box-and-whisker plots. In this example, the horizontal box and whiskers represent uncertainty around
selected percentile estimates of variability. Specifically, the three box-and-whisker plots correspond to
the 25", 50", and 95" percentiles of the distribution for variability in HQ. The box shows the 25" and
75" percentiles (i.e., interquartile range) of uncertainty, whereas the whiskers show the 5" and
95" percentiles of uncertainty. In this example, uncertainty in the 95" percentile HQ is quantified by the
box-and-whiskers plot in which the 5" percentile of uncertainty is 1.1, the 50" percentile is 1.3, and the
95" percentile is 1.4. This suggests that despite the uncertainty in the estimate of the 95" percentile of
variability, an HQ of 1.0 is likely to be exceeded. Sometimes such results are said to describe the
90% confidence interval in the 95" percentile HQ. The term “confidence interval” is used loosely in this
context to convey information about uncertainty; however, it is not the same as a statistical confidence
limit that one might obtain by estimating a population parameter from a sample. An alternative term that
may be more appropriate in this case is “credible interval”.

The three curves represent similar information on uncertainty across the complete range of
percentiles for variability. The solid line shows the CDF for all of the 50" percentiles of uncertainty,
whereas the dotted lines show the 5™ and 95" percentiles of uncertainty.

The box-and-whisker plot is simple to produce, conveys information about the symmetry and
width of the confidence interval, and is easy to interpret (Tufte, 1983). In general, box-and-whisker plots
are useful for summarizing results from two-dimensional Monte Carlo (2-D MCA) simulations. The
methods and inferences associated with 2-D MCAs are discussed further in Appendix D. The results of a
2-D Monte Carlo simulation represent a range of possible estimates for the percentile given one or more
sources of uncertainty that were included in the simulation. If the target audience for this graphic has a
greater understanding of statistics, it may be less confusing if alternative phrases are used to describe the
results, such as “credible interval” or “probability band”.

Graphics that show probability density functions for uncertainty (PDFu’s) are generally more
meaningful to a technical audience of risk assessors and uncertainty analysts. Alternative graphics may
be needed to communicate other sources of uncertainty in risk estimates (e.g., use of alternative
probability models for exposure variables, effect of changes in the model time step, application of spatial
weighting to concentration data, etc.). Additional information on communicating risks to senior EPA
managers is given by Bloom et al. (1993).

The results from the sensitivity analysis may be useful to the senior managers in deciding
whether additional sampling is necessary. One issue that may be important to address with risk managers
and senior staff is that the width of the credible interval (e.g., 5" to 95" percentiles of uncertainty) will be
determined in part by the number of sources of uncertainty that are quantified. As additional sources of
uncertainty are quantified and included in the model, the interval around the risk distribution will tend to
widen. This situation may appear to be counterintuitive for those managers who expect confidence to
increase as uncertainty is quantified. However, by uncovering and quantifying the sources of
uncertainty, the benefits in the risk communication and decision-making process should become clear.
The results of the sensitivity analysis should help to focus discussions, data collection efforts, and
analyses on the more significant sources of uncertainty. In addition, by developing estimates of credible
intervals of uncertainty in risk estimates, the decision-making process using the tiered approach may
become more transparent.
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6.4.3 PRESS RELEASES

For a press briefing presentation, care should be given to identify messages and develop
publication quality graphics with clear descriptions that can be provided in press packages. It is usually a
good idea to provide the graphics in both color and black and white so that the press can choose the most
appropriate presentation style for the story. The RPMs generally should work with the CIC, the press
staff in the Communication Division, and senior managers to develop press materials. Adequate time
should be left for the preparation of materials and internal Agency review and approval before
information is released.

6.5 PERCEPTION OF RiSK AND UNCERTAINTY

The purpose of this section is to present current thinking about how people view risk and
uncertainty. This section should provide useful information for planning risk communication and
addresses the first step in the seven step process (Section 6.2.2), “Identify the Audience.”

There are many individual differences in the way people regard the risks and hazards that are
present in modern life. These differences have their roots in the differences in perception of risk and
uncertainty of the individual human mind (Slovic, 1986). The risk assessor and/or risk communicator
should keep in mind the general perceptions about risk held by different groups. Communications should
be tailored to the specific audience. This section summarizes some of the criteria used to judge risks in
the absence of scientific data and the direction of the potential bias that may be expected by applying
these criteria. Additional publications on this issue are identified in the reference section at the end of
this chapter.

In the absence of scientific data, the general public evaluates risks using inferences of judgment
as described below (Slovic et al., 1979):

* Availability: People tend to judge risks as more likely if they are easy to recall.

* Overconfidence: People tend to be overconfident about the judgments they make based on
the use of heuristics.

* Desire for Certainty: People tend to misgauge risk/benefit conflicts in favor of the benefits
as a result of a desire for certainty and anxiety about uncertainty.
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Slovic et al. (1979) identified nine characteristics of risk that may influence perceptions. These
nine dimensions may provide a perspective on whether a health risk is perceived as “more risky” or “less
risky”, as described in the table below.

Dimension of Risk More Risky Less Risky
Voluntariness Involuntary Voluntary
Immediacy of the effect Delayed Immediate
Exposed persons’ knowledge about Low High
risk

Sciences’ knowledge about risk Low High
Control over risk Low High
Newness Unfamiliar or New Familiar
Chronic/Catastrophic Catastrophic Chronic
Common/Dread Dreaded Common
Severity of the consequences High Low

The presentation of uncertainty in a risk estimate can be interpreted with vastly different
conclusions depending on the audience and their perceptions. For example, a thorough scientific account
of multiple sources of uncertainty presented to a group of interested risk assessors and environmental
scientists may be clearly understood. Such a group will likely conclude that the assumptions made in the
risk assessment were appropriate and that the results can be used with confidence as a decision support
tool. In contrast, a similar scientific presentation given to the community may be misunderstood, and the
perceived risk may be greater. Citizens are often more concerned about the potential impact to their
personal situation, than to the uncertainty in the risk estimate. Consequently, the community may react
negatively to a long, highly scientific presentation on uncertainty. A good rule of thumb is to limit the
presentation to no more than 15 minutes.

Focusing heavily on uncertainty may cause citizens to conclude that the risk must be high. They
may also conclude that the presenter is incompetent because he or she is not sure of anything, or that the
presenter is trying to hide something by cloaking the information in technical jargon, or even that the
presenter is intentionally avoiding the public’s issues of concern. To the extent possible, technical jargon
during the presentation should be avoided or explained.

A helpful presentation generally should incorporate the following steps: (1) present information
about the conclusions that can be drawn from the risk assessment; it is extremely frustrating for
decision-makers to receive detailed information on uncertainty without conclusions (Chun, 1996);

(2) describe the certainty of the information that supports these conclusions; (3) address the uncertainty
and its implications for the conclusions; and (4) present the information without jargon and in a frank and
open manner. Section 6.4 provides examples of graphics that may be useful in presentations of PRA.
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6.6 TRUST AND CREDIBILITY

The single most important quality a presenter may need to possess in order to communicate to
others is a sense of trust and credibility. Trust and credibility are based on working with the community
and providing thoughtful, accurate responses to questions and concerns raised by the community.
Building trust and credibility is important, whether communicating to a high-level technical audience, a
RPM/decision-maker who wishes to have the "big picture," or the public.

Credibility can best be established through a long history of frank and open discussions with the
community. In addition, a presenter can gain credibility if he or she has the ability to restate the available
information so that it addresses the concerns and interests of an audience. The ability to garner trust and
credibility comes from knowing the audience, respecting their opinion, and communicating at an
appropriate level (U.S. EPA, 1994).

6.7 COMMUNICATION ISSUES FOR RPMS

Following the RPM’s decision to conduct a site-specific PRA, the level of stakeholder
involvement in the development and review of the PRA should be evaluated. Establishing the
appropriate level of stakeholder involvement may include input from the CIC, risk assessor and
appropriate senior managers (e.g., Section Chief, Branch Chief, etc.). The level of stakeholder
involvement may vary depending on the site complexity and the interest of the community. As an initial
step, it may be appropriate to conduct an exploratory session where letters are sent to various
stakeholders (e.g., environmental groups, CAG, etc.) inviting their participation in a general meeting on
the topic of PRA. If there is a strong interest among the stakeholders, then a more involved
communication plan may be appropriate including, but not limited to the following steps:

» Providing stakeholders with an introduction to the principles of PRA in an informal session
(e.g., public availability session).

* Providing a draft Scope of Work (SOW) to interested stakeholders followed shortly
thereafter by an availability session to discuss comments on the document.

* Providing a period of time for the stakeholders to review and comment on the selected
distributions, including an availability session for discussions with EPA staff where the
community may help to identify key site-specific information such as exposure factors and
receptor behavior.

* Providing the opportunity for EPA risk assessor to meet with the TAG grantee (if
appropriate) and stakeholders to ask questions regarding the SOW.

* Providing a revised SOW including a response to stakeholder comments.
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* Providing an overview of the final PRA at a public meeting and providing appropriate
supporting PRA documents in the repositories for stakeholder review and comment. This
session may be part of the general session regarding the remedial investigation when the risk
assessment is discussed. Based on the complexity of the PRA, it may be appropriate to hold
a public availability session where the stakeholders (including the TAG grantee), if
appropriate, are able to meet with EPA staff to ask questions and offer suggestions regarding
the document.

*  Providing a response to comments from stakeholders regarding the PRA.

If the level of interest is low, then a less extensive CIP may be appropriate. In this case, fact
sheets (in plain language) describing the general principles of PRA to the stakeholders and the key
findings of the PRA may be provided (U.S. EPA, 2000a). At public meetings where the risk assessment
is discussed, a short discussion of the PRA findings and their significance may be appropriate. The PRA
document should be made available in the repositories for review and comment by the stakeholders.

For sites with medium interest, a combination of the activities identified above may be
appropriate. For example, it may be appropriate to have a public availability session on the principles of
PRA and then make the documents available for review and comment.

The RPM should consider a number of administrative issues in developing the plan for involving
the stakeholders in the PRA. Issues to consider include: staff resources, funds for obtaining meeting
space, availability of contractor support, significance of PRA in decision making, and the length of time
required to complete the RI/FS. To aid in reducing costs, it may be appropriate to combine meetings
regarding PRA and point estimate risk assessment based on the close links between the documents.
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CHAPTER 7

ROLE OF THE PRA IN DECISION MAKING

7.0 INTRODUCTION

When deciding whether or not to remediate a hazardous waste site, the risk manager needs to
know if an unacceptable risk is present, and if so, what cleanup level to apply to the contaminated media.
For this information, the risk manager should turn to the risk assessor for help in interpreting the results
of the risk assessment. This chapter provides guidance on how to interpret the results of a probabilistic
risk assessment (PRA) to help determine if an unacceptable risk is present, and the criteria to consider
when deriving a risk-based preliminary remediation goal (PRG) and a final remedial goal.

7.1 GENERAL PRINCIPLES OF RISK-BASED DECISION MAKING IN SUPERFUND

Under Agency policy, an individual with reasonable maximum exposure (RME) will generally be
the principal basis for evaluating potential human health risks at Superfund sites (see Risk Assessment
Guidance for Superfund (Section 6.1.2 of U.S. EPA, 1989) and the National Contingency Plan’s (NCP)
Preamble (U.S. EPA, 1990)). The RME is defined as the highest exposure that is reasonably expected to
occur at a site, and is intended to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures. In general, where cumulative carcinogenic risk
to the RME individual is less than 1E-04, and the non-carcinogenic Hazard Index (HI) is less than or
equal to 1, remedial action is not warranted under Superfund unless there are adverse environmental
impacts, or the applicable or relevant and appropriate requirements (ARARs) are not met. As discussed
in Section 7.2.4, the RME receptor is often (although not always) an appropriate basis for evaluation of
risks to ecological receptors, as well.

Once a determination of unacceptable risk to humans and/or ecological receptors has been made,
the risk managers will typically ask the risk assessor to develop site-specific PRGs. PRGs are generally
defined as health-based chemical concentrations in an environmental media for which the risks (cancer or
noncancer) to the RME receptor would not exceed some specified target level. For systemic or
noncarcinogenic toxicants, the target risk level is generally a HI of unity (1). This is considered to be a
threshold concentration to which the human population (including sensitive subgroups) and ecological
receptors may be exposed without adverse effect during less-than-lifetime (i.e., chronic, subchronic, or
short-term) exposures. For carcinogens, the target risk level used to derive the PRG typically represents
a cumulative lifetime cancer risk to an individual of between 1E-06 and 1E-04 (equivalently expressed as
10° and 10*). For carcinogenic risks, less-than-lifetime exposures are converted to equivalent lifetime
values (U.S. EPA, 1989). The 1E-06 risk level is specified in the NCP as a point of departure for
determining remediation goals when ARARSs are not available or not sufficiently protective. It is
important to remember that risk-based PRGs are initial guidelines and do not represent final cleanup or
remediation levels. Remediation levels are finalized after appropriate analysis in the remedial
investigation/feasibility study (RI/FS) and record of decision (ROD). A final cleanup level may differ
from a PRG based on the risk manager’s consideration of various uncertainties in the risk estimate, the
technical feasibility of achieving the PRG, and the nine criteria outlined in the NCP (see Chapter 1,
Exhibit 1-2).
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EXHIBIT 7-1

DEFINITIONS FOR CHAPTER 7

Applicable or Relevant and Appropriate Requirements (ARARS) - Federal or state environmental standards; the NCP
states that ARARs should be considered in determining remediation goals. ARARs may be selected as
site-specific cleanup levels.

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in a population,
usually considered to be the mean or median of the distribution.

Confidence Interval - A range of values that are likely to include a population parameter. Confidence intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95 percentile risk).
When used to characterize uncertainty in a risk estimate, it is assumed that methods used to quantify uncertainty
in the model inputs are based on statistical principles such as sampling distributions or Bayesian approaches.
For example, given a randomly sampled data set, a 95% confidence interval for the mean can be estimated by
deriving a sampling distribution from a Student's t distribution.

Credible Interval - A range of values that represent plausible bounds on a population parameter. Credible intervals
may describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95" percentile
risk). The term is introduced as an alternative to the term confidence interval when the methods used to
quantify uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian
approaches. For example, multiple estimates of an arithmetic mean may be available from different studies
reported in the literature—using professional judgment, these estimates may support a decision to describe a
range of possible values for the arithmetic mean.

Hazard Index (HI) - The sum of more than one Hazard Quotient for multiple substances and/or multiple exposure
pathways. The HI is calculated separately for chronic, subchronic, and shorter-duration exposures.

Hazard Quotient (HQ) - The ratio of a single substance exposure level over a specified time period (e.g., subchronic)
to a reference dose (or concentration) for that substance derived from a similar exposure period.

Preliminary Remediation Goal (PRG) - Initially developed chemical concentration for an environmental medium that
is expected to be protective of human health and ecosystems. PRGs may be developed based on applicable or
relevant and appropriate requirements, or exposure scenarios evaluated prior to or as a result of the baseline risk
assessment. (U.S. EPA, 1991a, 1991b).

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S.
EPA, 1989). The intent of the RME is to estimate a conservative exposure case (i.e., well above the average
case) that is still within the range of possible exposures.

Remedial Investigation/Feasibility Study (RI/FS) - Studies undertaken by EPA to delineate the nature and extent of

contamination, to evaluate potential risk, and to develop alternatives for cleanup.

RME Range - The 90" to 99.9™ percentiles of the risk distribution generated from a PRA, within which an RME risk
value may be identified. The 95" percentile is generally recommended as the starting point for specifying the
RME risk in a Superfund PRA.

RME Risk - The estimated risk corresponding to the reasonable maximum exposure.
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7.2 INTERPRETING A RISK DISTRIBUTION
7.2.1 WHAT Is A DiSTRIBUTION OF Risk AND WHAT DOES IT Look LIKE?

In the traditional point estimate risk assessment approach, risks to the RME individual are
characterized as single point values (e.g., HI=2, or cancer risk=1E-05). Inthe PRA approach, the output
of the risk assessment is an estimate of the distribution of risks across all members of the population. An
example is shown in Figure 7-1.
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Figure 7-1. Hypothetical PRA results showing a cumulative distribution function (CDF) for lifetime excess
cancer risk.

In this example, the x-axis of Figure 7-1 represents the excess lifetime cancer risk level and the y-axis
represents the cumulative probability of the cancer risk level within the hypothetical population. The
graph also shows various landmarks along the distribution curve such as the 50" percentile, the 90™, 95",
etc. In this illustration, the 95" percentile corresponds to a cancer risk of 1.2E-06.
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7.2.2 WHAT IS THE RME RANGE?

Given a risk distribution such as shown in Figure 7-1, what part of the risk distribution should a
risk manager be concerned about? As explained above, the risk to the RME receptor is a key factor in
making decisions regarding the need for action at a Superfund site. EPA’s Guidelines for Exposure
Assessment (U.S. EPA, 1992) states that the “high-end” (or RME) of exposure for a population occurs
between the 90" and 99.9" percentiles, with the 99.9" percentile considered a bounding estimate.
Similarly, PRAs developed to support RME risk estimates for Superfund should reflect this approach.

v [n this guidance, the 90" to 99.9" percentiles of the risk distribution are
collectively referred to as the recommended RME range.

In utilizing PRA results to determine if an unacceptable risk is present and to develop a PRG
which is sufficiently protective, risk managers should address two questions:

(1) What percentile of the risk distribution will be selected to represent the RME receptor?
(2) How will information on uncertainty in the high-end risk estimates be used in this process?

The risk manager may consider a number of factors in choosing a specific percentile to represent
the RME individual. This may include both quantitative information and professional judgment. In
particular, risk managers may need to understand what sources of variability and uncertainty are already
explicitly accounted for by the modeling approach and inputs (i.e., point estimates and/or probability
distributions) used to estimate the risk distribution, and what sources may be present but are not
quantified. Approaches for selecting an appropriate percentile in human health and ecological risk
assessments are described below.

7.2.3. RELATING THE RiSK DISTRIBUTION TO THE RISK MANAGEMENT GOAL FOR HUMAN HEALTH

In most cases, a recommended starting point for risk management decisions regarding the RME
is the 95" percentile of the risk distribution. The 95" percentile for the risk distribution is an appropriate
description of high-end exposure as identified by the Presidential/Congressional Commission on Risk
Assessment and Risk Management (1997).

= [n human health PRA, a recommended starting point for risk management
decisions regarding the RME is the 95" percentile of the risk distribution.

Figure 7-2 illustrates this approach for a site where cancer risks are the risk driver. Assume the
risk manager has selected an excess cancer risk of 1E-05 as the risk management goal, and the
95" percentile as the definition of the RME. If line B on the graph represents a 1E-05 probability of
cancer, a no-action decision may be warranted because the 95" percentile of the risk distribution is below
the cancer risk level of concern. Conversely, if we were to assume that the 95™ percentile is above the
risk level of concern (i.e., line A on the graph represents 1E-05), remedial action may be warranted.
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Figure 7-2. Example of a probability distribution for risk illustrating the 95" percentile and
two different risk levels of concern (A and B). Assuming the 95" percentile corresponds to
the RME, the need for remedial action depends on how the RME risk compares with the risk
level of concern. For Case A (RME > level of concern), remedial action may be warranted.
For Case B (RME < level of concern), remedial action may be unnecessary.

Although the 95™ percentile is recommended as a starting point for defining the RME in the
majority of human health risk assessments conducted within the Superfund program, the risk manager
may use discretion in selecting a different percentile within the RME range (90" to 99.9" percentiles). In
situations where the risk manager believes that a sufficient amount of site-specific information has been
collected to indicate that the risk estimates are much more likely to be high (e.g., overestimated due to
multiple health protective inputs), the risk manager may choose a lower percentile within the
recommended RME risk range (e.g., the 90™) as the most representative of the RME estimate at the site.
Conversely, when the risk manager believes that the risk estimates may tend to underestimate true risks,
or if there is substantial uncertainty in the accuracy of the risk estimates, the risk manager may choose a
percentile higher than the 95" in the recommended RME risk range (e.g., the 98" or the 99™). There are a
variety of factors that can be considered when making this decision, such as the qualitative and
quantitative uncertainty in the exposure assessment calculations, the uncertainty in the toxicity values,
and the presence of biological or measured data (in contrast to modeled data). These factors are
discussed below in Section 7.3. It is highly recommended that the risk manager consult with the site risk
assessor when applying these factors to determine an appropriate percentile in the RME risk range.
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7.2.4 RELATING THE RiSK DISTRIBUTION TO THE RISK MANAGEMENT GOAL FOR ECOLOGICAL
RISK ASSESSMENT

For ecological risk assessments, the choice of the percentile of the variability distribution for
exposure or risk that will be protective depends on the receptor that is being considered as well as the
nature of the endpoint used to establish the level of concern. For most species, the risk management
objective will generally be to ensure population sustainability, even if some individual members of the
population (those at the upper end of the exposure or risk distribution) may experience a higher risk of
adverse effects. The risk management goal of population stability does not necessarily correspond to
protection of the central tendency receptor at or below the regulatory level of concern.

As indicated in Chapter 4, without knowledge of the proportion of the local population that must
survive and reproduce for the population to be stable, the choice of the central tendency exposure (CTE)
receptor as the basis of the risk management goal may not be protective. Sustainability of a local
population often depends upon the amount of “reserves” within that subpopulation to fill in ecological
niches left voided by toxicologically impaired individuals. At a very small number of sites, a population
biologist may be able to provide information about the level of effect associated with a decrease in
population sustainability. At the majority of sites, the use of the CTE receptor by risk management as the
basis for adequate protection of local populations of ecological receptors cannot be supported.
Therefore, in the absence of such species-specific (trophic level) information, it is prudent and
appropriate to base PRGs and cleanup levels on the upper end of the distribution of variability in the
Hazard Quotient (HQ) to provide greater confidence that the receptor population of concern will be
protected.

For threatened or endangered species, it will normally be appropriate to provide protection to as
high a percentile of the distribution (i.e., the RME receptor) as is practicable (e.g., high-end of the RME
range of 90" to 99.9™ percentiles), since injury to even a single individual is undesirable.

7.3 FACTORS TO CONSIDER IN CHOOSING THE PERCENTILE FOR THE RME

Risk assessments (both point estimate and PRA) should be based on the best quality data
available. A key component of the risk management process is a careful review and evaluation of the
potential limitations in the quality and relevance of the data that are used in the risk assessment (i.e.,
qualitative and quantitative uncertainties) in order to evaluate the strengths and weaknesses of the
assessment (U.S. EPA, 1993). Communication between risk managers, risk assessors, and other
technical team members is vital at this stage. The main question to be answered is, “How well do the
inputs to the risk assessment represent exposure pathways and behaviors at a given site?” The answer to
this question can be expressed qualitatively (e.g., high, medium, or low) or quantitatively (e.g.,
confidence intervals or credible intervals). Some examples of these types of evaluation are illustrated
below.

Use of Default Exposure Distributions

When site-specific data are not available, the best available information on some exposure
parameters most likely will be from studies at other sites (e.g., in other parts of the country). In both
point estimate risk assessment and PRA, the use of surrogate data to support input parameters raises
questions about representativeness for both current and future land use scenarios. A specific example of
potentially poor representativeness would be the use of national data for estimating the exposure
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frequency of adult workers when the receptor of concern is a railroad worker. Railroad workers may
typically be on the site for only 100 days/year. Ifthe risk assessment were based on the national default
assumption of 250 days/year, this choice would give a high bias to the risk estimate.

Another example of a site-specific exposure factor that may vary considerably among different
locations is fish ingestion rates. At sites where ingestion of fish contaminated with metals poses a
concern, tissue concentrations from fish fillets collected on site are often used to determine the
concentration term. However, a cultural practice of people harvesting fish on site may include
consuming some of the internal organs of the fish in addition to the fillets. If the metal contaminants
selectively accumulate in the interal organs instead of the fillet tissues, use of data only on fillets
contaminants would give a low bias to the risk estimate.

Other Factors that Influence Site-Specific Exposures

Exhibits 7-2 and 7-3 list other types of factors that may be important to consider when evaluating
the representativeness of an exposure or risk model. Given the source of the available data, the risk
assessor should identify potential uncertainties and discuss the likelihood that the values used may under-
or overestimate actual site-specific exposures. The risk manager should consider this information in
decision making throughout the tiered process for PRA (see Chapter 2).

EXHIBIT 7-2
EXAMPLES OF DEMOGRAPHIC, CULTURAL, AND BEHAVIORAL FACTORS THAT CAN AFFECT EXPOSURE

e  Subsistence fishing, hunting, or ingestion of home-grown produce
e Exposures to cultural foods or medicines that contain contaminants
*  Preparation of foods in containers that contain contaminants that may leach out into food or beverage

* Hobbies and other personal practices resulting in exposure to contaminants

e Age of the population (e.g., children may have greater exposure and susceptibility than adults (U.S.
EPA, 1995b, 1996)

EXHIBIT 7-3
EXAMPLES OF PHYSICAL OR GEOGRAPHICAL FACTORS THAT CAN AFFECT EXPOSURE

e Geographical features that limit or enhance accessability (e.g., slopes, valleys, mountains)

e Land use, including where exposure occurs within the exposure unit, and the current or future manner in
which the receptor contacts the contaminated media

e  Availability of contaminated medium for exposure (e.g., grass vs. bare soil)
e Depth of contamination (e.g., surface soil is of greatest concern for direct contact)

e Bioavailability of contaminant from media or water (e.g., physiochemical factors that enhance or reduce
absorption)

e  Water quality and distribution systems, including water hardness and use of lead-soldered pipes

e Temporary barriers (e.g., fences, ground cover, and concrete) that affect current (but not necessarily
future) exposures
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For example, the features of a potentially exposed population and the physical and geographical
factors at a site can increase or decrease exposure to contaminated media. These factors should be
considered in defining exposure pathways and characterizing exposure variables in the risk assessment.
Such site-specific information may support a decision to evaluate the entire RME range (90" to
99.9" percentile) before selecting the percentile that represents RME risk. A departure from the
95™ percentile would depend on whether or not qualitative or quantitative factors suggest an increased or
decreased exposure, and hence, risk. In practice, multiple and sometimes competing factors may need to
be balanced in order to determine an appropriate percentile for the RME risk (see hypothetical example
in Section 7.5).

Subpopulations may be at increased risk from chemical exposures due to increased sensitivity,
behavior patterns that result in high exposures, and/or current or past exposures from other sources.
Environmental health threats to children are a particular concern (U.S. EPA, 1995b, 1996). Once
identified, a subgroup can be treated as a population in itself, and characterized in the same way as the
larger population using similar descriptors for population and individual risk (U.S. EPA, 1995a). This
principle applies to both point estimate risk assessments and PRA.

Use of Biological Data

Biological monitoring data and/or other biomarker data can be useful sources of information for
evaluating uncertainty in an exposure or risk assessment. These data can provide an indication of the
magnitude of current or past exposures and the degree to which the exposures are correlated with
contaminated site media. Examples of biological data that are useful in human health assessments
include lead in blood, trichloroethylene and its metabolites in blood or urine, arsenic or methyl parathion
metabolites in urine, and polychlorinated biphenyls (PCBs) or dioxins in blood or fat tissue. Tissue
burdens of contaminants are also widely useful as biomarkers of exposure in ecological risk assessments.
Just as air or groundwater monitoring data can provide increased (or decreased) confidence in the results
of predictive air or groundwater models, biomarkers can be used in a similar manner to evaluate how
much confidence should be placed in predictive exposure assessment models. Biological data can be
subject to the same shortcomings as other exposure data in terms of data quality and representativeness.
The design and performance of the biological data collection effort generally should be carefully
evaluated for these factors (e.g., low, medium, and high quality or confidence; low or high bias, etc.)
before using the results in the risk decision. Currently, collection of biological monitoring data is limited
at Superfund sites and requires coordination with appropriate agencies outside of EPA.

Issues Related to Toxicity Factors

A variety of factors may affect the magnitude of adverse responses expected to occur in similarly
exposed individuals such as age, physiological status, nutritional status, and genotype. In general, these
sources of inter-individual variability, and related uncertainties, are taken into account in the derivation
of toxicity values (e.g., reference concentration (RfC), reference dose (RfD), and carcinogenic slope
factor (CSF)) used in human health risk assessments. Thus, human health toxicity values usually are
derived to be health-protective for the most sensitive populations.

1= Sources of variability or uncertainty are often accounted for in the
derivation of toxicity values. The level of protectiveness afforded by the
toxicity value may be an important factor in deciding on the appropriate
RME risk percentile to use.
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Risk managers, in collaboration with risk assessors, should carefully consider whether the
toxicity value is representative of the population of concern. For example, the toxicity value may be
based on oral exposures to drinking water, whereas exposure to a site population being evaluated may be
via soil ingestion. Similarly, the toxicity value could be based on effects in a healthy worker population,
whereas the site population encompasses all ages and a range of individual health conditions.
Uncertainty in toxicity values may reflect insufficient data to evaluate developmental toxicity concerns or
to account for in utero exposures. Also, it may be unclear whether the population of concern has similar
characteristics to the sensitive population accounted for in the derivation of the toxicity value. This
determination may require coordination with a toxicologist to review the basis for the derivation of the
toxicity values in question. Even then, in most cases, the determination will be very difficult, because
our understanding of human variability in toxicologic responses is very limited for many chemicals.
When data are insufficient to support a more quantitative representation of these sources of
inter-individual variability an uncertainty factor may be used in the derivation of non-cancer human
health toxicity values (RfD, RfC).

Some of the same factors that should be considered when employing toxicity values to estimate
risk are also relevant to the use of toxicokinetic and toxicodynamic modeling in risk assessment. For
example, a toxicity assessment for methylmercury used a technique called benchmark dose modeling
(BMD) to relate the levels in maternal blood to adverse developmental effects, based on data from a
large epidemiology study of Faroes Islanders (Grandjean et al., 1997; Budtz-Jergensen et al., 2000). The
RfD determined is well-supported by the other large human studies from the Seychelles (Davidson et al.,
1995, 1998) and New Zealand (Kjellstrom et al., 1986, 1989) as well as a physiologically-based
pharmacokinetic (PBPK) model based on the Seychelles data (Clewell et al., 1999). The RfD obtained
with benchmark dose modeling (BMD) was 1E-04 mg/kg-day. The PBPK model incorporated variability
in toxicokinetics to obtain a range of acceptable intakes of methylmercury between 1E-04 and 3E-04
mg/kg-day. Although the PBPK model was not used in the derivation of the benchmark dose value, it
was used to support the choice of uncertainty factors in the derivation of the RfD.

At the time this guidance was
finalized, the understanding of this type of
toxicity information (i.e., human variability)
was not well developed. Although such
information was not used to characterize
variability in human health risks, the

EXHIBIT 7-4

EXAMPLES OF TOXICITY CONSIDERATIONS

e How severe is the effect?

estimates of variability from the PBPK
model did provide additional information on
uncertainty. For decision makers, the
toxicity data and the choice of the endpoint
(e.g, neurodevelopmental effects in the case
of methylmercury) can guide qualitative risk
management choices regarding the
percentile representing the RME (within the
90™ to 99.9" percentile range) and/or the
appropriate level of confidence in the RME
estimate. Exhibit 7-4 lists some of the
issues to consider when evaluating the
uncertainty in a toxicity value.

Is the effect reversible?

How steep is the slope of the dose-response
curve at low dose?

Is the contaminant persistent in the
environment or in receptors?

Does the contaminant bioconcentrate as it
moves through the food chain?

How bioavailable is the contaminant?
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Use of Quantitative Uncertainty Estimates

PRA methods such as a two-dimensional Monte Carlo analysis (2-D MCA) may be used to
quantify the uncertainty or confidence surrounding risk estimates, and this information may be helpful in
selecting the RME risk percentile. Figure 7-3 provides hypothetical results of a 2-D MCA where a
credible interval has been quantified for a 95" percentile of variability in noncancer HI. In exposure
units (EU) 1 and 3, the credible intervals for the 95" percentile are fairly narrow, which suggests a high
degree of confidence that the risks in EU1 are negligible and that the risks in EU3 are unacceptable.
Conversely, the relatively wide credible intervals in EU2 and EU4 give less confidence in the results, but
suggest that the 95" percentiles likely exceed a target HI of 1 in both cases. Further efforts to reduce or
characterize uncertainties may affect the risk management decision in these two areas.

5.0
9 5th%tile

g 4.0 1 7 5th%tile
% 30 4 qj - |50th%tile
"_E | 25th%tile
& 2.0 Sth%tile
i
= 1.0
: =

0.0

EU1 EUZ EU3 EU4
Exposure Units (ET)

Figure 7-3. Box and whisker plots characterizing uncertainty in the RME risk estimates (95" percentile of the
Hazard Index) at four locations. The box represents the inter-quartile range (25™ to 75" percentiles) while the
whiskers represent the 90% credible interval (5™ to 95™ percentiles).
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Summary: Multiple Criteria Form the Basis of the Remedial Decision

Final risk management decisions should be based on a weighted consideration of all of the
relevant factors that influence confidence in the risk distribution. For example, a risk manager may be
presented with a risk assessment for a heavy metal in residential soil in which the distribution of cancer
risk estimates in the RME range (i.e., 90" to 99.9" percentiles) overlaps the risk range of concern
(1E-06 to 1E-04). The risk manager then should proceed with the site technical team to evaluate the data
available to define inputs for the risk assessment, as well as the site-specific factors, and the available
biological monitoring data. Assume that several factors that are likely to increase the confidence in the
risk estimates were noted: (1) the soil collection and analysis effort was well-designed; (2) the
predominant chemical and physical forms of the metal in the soil are characterized by relatively low
bioavailability; (3) all of the yards in the residential neighborhood are covered with grass lawns, a feature
generally expected to reduce direct exposure to soil; and (4) biomonitoring data from the site are all
within normal physiological ranges, suggesting little, if any, excess contaminant exposure occurred at the
site. In addition, generic national data were used in the absence of site-specific information on two input
variables that ranked highest in the sensitivity analysis, thereby reducing confidence in the risk estimates.
In this example, the consideration of these factors collectively suggests that the results of the risk
assessment are likely biased towards an overestimate of risk, and this information may be used in a risk
management selection of a percentile of the risk distribution to represent the RME receptor (e.g., less
than or equal to the 95" percentile).

7.4 UNCERTAINTY ASSOCIATED WITH THE USE OF THE 99.9™ PERCENTILE

As previously stated, this guidance adopts the 90" to 99.9" percentiles of the risk distribution as
the recommended RME risk range for decision-making purposes, consistent with EPA’s Guidelines for
Exposure Assessment (U.S. EPA, 1992). A cautionary note should be added about the selection of the
higher percentiles within that range, especially the 99.9" percentile. The extreme percentiles (“tails”) of
an input distribution are understandably the most uncertain part of a PDF, since the number of data
values in these ranges are less abundant than in the center of the range. This uncertainty in the tails of
the input distributions leads in turn to greater uncertainty in the tails of the calculated exposure or risk
distribution, and the magnitude of this uncertainty increases rapidly at the very high percentiles. In many
cases, estimates at the extreme tails, such as the 99.9" percentile, may be neither accurate nor plausible.
For that reason, great care should be taken when evaluating an RME risk in the upper percentiles of the
risk range.

7.5 MoVING FROM A PRG To A REMEDIAL GOAL

As discussed above, where an unacceptable risk is identified, the risk assessor is typically asked
to develop site-specific PRGs (see Chapter 5 for discussion on derivation of PRGs). PRGs may be
developed using a probabilistic approach much in the same manner as they are developed using a point
estimate approach. The target risk level should be set for a specified percentile (corresponding to the
RME receptor), and the concentration in contaminated media which corresponds with that target risk
level should be calculated. It is important to understand that the PRG is an early step, not the last step, in
the selection of a final cleanup level. During the RI/FS, the risk manager should evaluate the remedial
alternatives using the nine criteria described in the NCP (U.S. EPA, 1990) (Chapter 1, Exhibit 1-2).
Achieving a target level of protection for human and/or ecological receptors is one of the primary factors,
but this objective should be balanced by criteria such as feasibility, permanence, state and community
acceptance, and cost. Indeed, there may be times when a purely risk-based PRG may be impracticable as
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a final cleanup goal. In cases such as this, it is important to remember that the RME is not a single, fixed
percentile on the risk distribution, but instead represents the portion of the risk distribution curve
between the 90" and 99.9" percentiles. Depending on the specific exposure and toxicity information
available at a site, a PRG developed using the 90" percentile of risk may be sufficient to protect the
reasonably maximum exposed individual. Alternatively, at some sites, the risk manager may feel that a
PRG developed using even the 95" percentile of risk is not sufficiently protective of the RME individual
and thus may choose to develop a PRG using a higher percentile.

1= Selection of final remediation or cleanup levels during the RI/F'S and ROD
may be an iterative process, and may consider a range of factors in addition
to the initial PRG estimate.

For example, at a former nuclear energy site, a PRG of 200 picocuries/gram (pCi/g) was
developed for plutonium in soil based on a one-dimensional Monte Carlo analysis (1-D MCA) and the
recommended starting point of the 95" percentile for the RME individual. At this particular site, the
surrounding communities were strongly opposed to this PRG as a cleanup level. They felt it was not
adequately protective, and as a result, limited progress occurred in remediating the site over the years.
The communities pointed out to the risk manager that many of the exposure assumptions used in the PRA
were not site-specific, and some members of the community felt that exposures occurred more often (i.e,
with higher frequency) and for a longer period of time (i.e., for a greater duration) than were assumed.
Based on the exposure parameters recommended by the community, the PRG would have been 75 pCi/g.
At this point, the risk manager could have chosen to either go back and collect sufficient site-specific
demographic and exposure data to refine the risk calculations and the PRG derivation, or evaluate the
feasibility of a PRG associated with higher percentiles on the risk distribution curve (e.g.,

99" percentile). In this particular example, the risk manager compared the costs associated with the
cleanup that would be required to satisfy the community concerns with the costs associated with
collection of additional data and recalculation of the risk and PRG. The risk manager decided that the
additional cost of cleanup was manageable and expected that the PRG based on the 99" percentile would
be accepted by the community. In addition, remedial activity could begin quickly without more
investigation. When the risk manager presented these findings to the community, the citizens quickly
agreed with this approach and remediation activities moved forward.

How does Variability and Uncertainty in Risk Relate to the Choice of a PRG?

An effective approach for communicating the results of a probabilistic analysis to risk managers
is to develop graphics that relate variability and uncertainty in risk to the choice of a PRG. Two graphics
are illustrated in Figures 74 and 7-5, based on the concept of iterative simulations presented in Chapter 5
(Section 5.5). Continuing the PRG example discussed above, assume that multiple 1-D MCA
simulations are run with PRGs for plutonium ranging from 25 pCi/g to 250 pCi/g in increments of
25 pCi/g. As the concentration term is changed to correspond with a PRG, each Monte Carlo simulation
yields a different distribution of risk. Figure 7-4 focuses on the RME range of percentiles from the risk
distribution (i.e., 90™ - 99.9" percentiles). A risk manager might use this graphic to evaluate how the
PRG could change based on the choice of the percentile used to represent the RME. A hypothetical risk
level of concern of 1E-05 corresponds with the 90" percentile at a PRG of approximately 125 pCi/g,
whereas 1E-05 intersects the 95™ percentile line at a PRG of approximately 75 pCi/g. Therefore, when
variability in risk is the focus of the decision, the difference between an RME set at the 95" percentile
instead of the 90" percentile is 50 pCi/g.
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Figure 7-5 presents information on uncertainty, rather than variability. This graphic could be
used to summarize results of a 2-D MCA (see Appendix D), or a series of 1-D MCA simulations (see
Chapter 3, Section 3.4) applied to the same range of PRGs evaluated in Figure 7-4. In this case, the
results yield a 90% credible interval (CI) for the risk distribution. Figure 7-5 highlights the 90% CI for
the 95" percentile, assuming that a risk manager selects the 95 percentile to represent the RME risk, and
she is interested in the uncertainty in the risk estimates. Using the same hypothetical risk level of
concern (1E-05), the 90% upper CI for the 95" percentile corresponds with 1E-05 ata PRG of
approximately 25 pCi/g. The risk manager may need to consider the cost and feasibility of achieving a
PRG as low as 25 pCi/g. In addition, the 90% lower CI corresponds to a PRG of 250 pCi/g. The risk
manager may determine that this range of uncertainty (i.e., an order of magnitude) is too wide to set a
PRG, and that further steps are needed to reduce identify the major sources (i.e., sensitivity analysis).

Variations on Figures 74 and 7-5 can be developed to focus on different percentiles of the risk
range. This information, together with the results of the sensitivity analysis which highlights the major
sources of variability and uncertainty, should help to guide the selection of final remediation or cleanup
levels, or continued data collection and analysis following the tiered process for PRA.
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Figure 7-4. Example of graphic showing variability in risk (i.e., RME range, or 90" to
99.9'" percentiles) associated with different choices of PRG for plutonium in soil (pCi/g).
The hypothetical risk level of concern (1E-05) corresponds to a 90" percentile risk at a a
PRG of ~ 100 pCi/g, and a 95" percentile at a PRG of ~ 75 pCi/g. In this example, all of
the 99.9" percentiles exceed 1E-05, leaving no choices for PRG at the high end of the
RME range.
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Figure 7-5. Example of graphic showing uncertainty in 95" percentile risk associated with
the same choices of PRGs given in Figure 7-4. Uncertainty is given by the 90% upper and
lower credible interval (CI). The hypothetical risk level of concern (1E-05) corresponds with
the 90% upper CI at a PRG of ~ 25 pCi/g, and the 90% lower CI at a PRG of ~ 250 pCi/g.
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APPENDIX A

SENSITIVITY ANALYSIS: HOwW DO WE KNOW WHAT’S IMPORTANT?
A0 INTRODUCTION

Sensitivity analysis, as it is applied to risk assessment, is any systematic, common sense
technique used to understand how risk estimates and, in particular, risk-based decisions, are dependent on
variability and uncertainty in the factors contributing to risk. In short, sensitivity analysis identifies what
is “driving” the risk estimates. It is used in both point estimate and probabilistic approaches to identify
and rank important sources of variability as well as important sources of uncertainty. The quantitative
information provided by sensitivity analysis is important for guiding the complexity of the analysis and
communicating important results (see Chapter 6). As such, sensitivity analysis plays a central role in the
tiered process for PRA (see Chapter 2). This Appendix focuses on a set of graphical and statistical
techniques that can be used to determine which variables in the risk model contribute most to the
variation in estimates of risk. This variation in risk could represent variability, uncertainty, or both,
depending on the type of risk model and characterization of input variables.

There is a wide array of analytical methods that may be referred to as sensitivity analysis, some
of which are very simple and intuitive. For example, a risk assessor may have two comparable studies
from which to estimate a reasonable maximum exposure (RME) for childhood soil ingestion. One
approach to evaluating this uncertainty would be to calculate the corresponding RME risk twice, each
time using a different plausible point estimate for soil ingestion rate. Similarly, in a probabilistic model,
there may be uncertainty regarding the choice of a probability distribution. For example, lognormal and
gamma distributions may be equally plausible for characterizing variability in an input variable. A
simple exploratory approach would be to run separate Monte Carlo simulations with each distribution in
order to determine the effect that this particular source of uncertainty may have on risk estimates within
the RME range (90" to 99.9" percentile, see Chapter 1).

Sensitivity analysis can also involve more complex mathematical and statistical techniques such
as correlation and regression analysis to determine which factors in a risk model contribute most to the
variance in the risk estimate. The complexity generally stems from the fact that multiple sources of
variability and uncertainty are influencing a risk estimate at the same time, and sources may not act
independently. An input variable contributes significantly to the output risk distribution if it is both
highly variable and the variability propagates through the algebraic risk equation to the model output
(i.e., risk). Changes to the distribution of a variable with a high sensitivity could have a profound impact
on the risk estimate, whereas even large changes to the distribution of a low sensitivity variable may have
a minimal impact on the final result. Information from sensitivity analysis can be important when trying
to determine where to focus additional resources. The choice of technique(s) should be determined by
the information needs for risk management decision making.

This appendix presents guidance on both practical decision making and theoretical concepts
associated with the sensitivity analysis that are commonly applied in risk assessment. An overview of the
type of information provided by sensitivity analysis is presented first, followed by guidance on how to
decide what method to use in each of the tiers. A straightforward example of applications of Tier 1 and
Tier 2 sensitivity analysis methods is shown, followed by a more detailed discussion of the theory and
equations associated with the different methods.
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EXHIBIT A-1

DEFINITIONS FOR APPENDIX A

Continuous Variables - A random variable that can assume any value within an interval of real numbers (e.g., body
weight).

Correlation - A quantitative expression of the statistical association between two variables; usually represented by the
Pearson correlation coefficient for linear models, and the Spearman rank correlation coefficient (see below) for
nonlinear models.

Discrete Variables - A random variable that can assume any value within a finite set of values (e.g., number of visits to a
site in one year) or at most a countably infinite set of values, meaning that you can count observations, but there is no
defined upper limit. An example of countably infinite would be the number of dust particles in a volume of air (a
Poisson distribution), whereas uncountably infinite would be the number of points in a line segment.

Local Sensitivity Analysis - Evaluation of the model sensitivity at some nominal points within the range of values of input
variable(s).

Monte Carlo Analysis (MCA) or Monte Carlo Simulation - The process of repeatedly sampling from probability
distributions to derive a distribution of outcomes. MCA is one of several techniques that may be used in PRA.

Multiple Regression Analysis - A statistical method that describes the extent, direction, and strength of the relationship
between several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric Tests - Statistical tests that do not require assumptions about the form of the population probability
distribution.

Range Sensitivity Analysis - Evaluation of the model sensitivity across the entire range of values of the input variable(s).

Rank - If a set of values is sorted in ascending order (smallest to largest), the rank corresponds to the relative position of a
number in the sequence. For example, the set {7, 5, 9, 12} when sorted gives the following sequence {5, 7,9, 12}
with ranks ranging from 1 to 4 (i.e., rank of 5 is 1, rank of 7 is 2, rank of 9 is 3, and rank of 12 is 4).

Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the values
of the model’s input(s). Sensitivity analysis attempts to provide a ranking of the model inputs based on their relative
contributions to model output variability and uncertainty. Common metrics of sensitivity include:

»__ Pearson Correlation Coefficient - A statistic  that measures the strength and direction of linear association
between the values of two quantitative variables. The square of the coefficient () is the fraction of the variance
of one variable that is explained by least-squares regression on the other variable, also called the coefficient of
determination..

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called elasticity.

»  Sensitivity Score - A sensitivity ratio that is weighted by some characteristic of the input variable (e.g., variance,
coefficient of variation, range).

> Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic » that measures

the strength and direction of association between the ranks of the values (not the values themselves) of two
quantitative variables. See Pearson (above) for 7°.
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A.1.0 UTILITY OF SENSITIVITY ANALYSIS

As highlighted in Exhibit A-2, sensitivity
analysis can provide valuable information for both
risk assessors and risk management decision makers
throughout the tiered process for PRA. By
highlighting important sources of variability and
uncertainty in the risk assessment, sensitivity analysis
is generally an important component of the overall
uncertainty analysis. For example, methods that
quantify parameter uncertainty and model uncertainty
may yield different estimates of the RME risk. This
information can be used to guide the tiered process by
supporting decisions to conduct additional analyses or
prioritize resource allocations for additional data
collection efforts. Results of sensitivity analysis can
also facilitate the risk communication process by
focusing discussions on the important features of the
risk assessment (e.g., constraints of available data,
state of knowledge, significant scientific issues, and
significant policy choices that were made when
alternative interpretations of data existed).

Decision Making with the Tiered Approach

EXHIBIT A-2

UTILITY OF SENSITIVITY ANALYSIS

* Decision making with the tiered approach-

e.g., After quantifying parameter uncertainty,
we are 95 percent confident that the RME risk
is below the risk level of concern— no further
analysis is needed. Also—selection of a beta
distribution over a lognormal distribution for
ingestion rate changes the 95" percentile of
the risk distribution by a factor of 10—further
evaluation may be needed.

Resource allocation - e.g., Two of the 10
exposure variables contribute 90 percent of
the variability in the risk estimate.

Risk communication - e.g., For input
variable X, if we were to use a distribution
based on site-specific data instead of a
national survey, we would expect a minimal
change in the RME risk estimate.

In general, the type of information provided by a sensitivity analysis will vary with each tier of a
PRA. Table A-1 provides an overview of the methods that may be applied in each tier based on the type
of information needed. In Tier 1, sensitivity analysis typically involves changing one or more input
variables or assumptions and evaluating the corresponding changes in the risk estimates. Ideally, the
results for Tier 1 would be useful in deciding which exposure pathways, variables, and assumptions are
carried forward for further consideration in subsequent tiers of analysis. By identifying the variables that
are most important in determining risk, one can also decide whether point estimates, rather than
probability distribution functions (PDFs), can be used with little consequence to the model output. This
information is important not only for designing 1-D MCA models of variability, but also for designing
more complex analyses of uncertainty discussed in Appendix D (e.g., 2-D MCA models, geostatistical
analysis, Bayesian analysis). Section A.2.2 provides an overview of the Tier 1 methods and some
insights regarding their limitations. Methods associated with Monte Carlo simulations used in Tiers 2
and 3 can take advantage of the ability to vary multiple inputs simultaneously and account for
correlations. Sections A.2.3 and A.3 provide an overview of the sensitivity analysis methods that can be

applied in a probabilistic analysis.
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Table A-1. Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 ofa PRA.

Tier Goal SA Method(s) What to Look For Rationale
1 Quantify contributions of | Calculate % of total risk | Exposure pathways that Good preliminary step in Tier 1 for reducing the number of
each exposure pathway from each exposure contribute a very small exposure variables to focus on in subsequent tiers.
to risk, identify major pathway percentage (e.g., < 5%) to
and minor pathways total risk
Exposure variables that Risk estimates are likely to be more sensitive to variables that
appear in multiple appear in multiple exposure pathways.
exposure pathways
1 Identify the form of the Inspection Equation is multiplicative | SR values can be determined with minimal effort (see
dose equation for key or additive Table A-3). For multiplicative equations, SR=1.0 for all
pathways variables in the numerator, and SR is a function of the percent
change for all variables in the denominator.
Equation contains Output is likely to be more sensitive to variables with
variables with exponents exponents greater than 1.0.
(e.g., powers, square
roots)
1 Quantify contributions of | Sensitivity Ratio (SR), SR = 1.0, or SR is the It’s likely that this is a multiplicative equation (see above), and

each exposure variable to
total risk, identify major
and minor variables

unweighted

same for multiple
variables

SR # 1.0

SR <1.0

the SR approach will not be effective at discriminating among
relative contributions. Explore sensitivity further with other
methods.

SR may vary as a function of the % change in the input
variable. In this situation, it can be informative to explore
small deviations (+ 5%) and large deviations (min, max) in the
input variables.

Implies an inverse relationship between the input and output
variables (e.g., inputs in the denominator of a risk equation).
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Table A-1. Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 ofa PRA.

Tier Goal SA Method(s) What to Look For Rationale
SR=0 Variable probably appears in both the numerator and
denominator and, therefore, cancels out of the risk equation.
Examples include exposure duration (ED) in noncancer risk
equations, and body weight (BW) if ingestion rate is expressed
as a function of body weight.

1 (cont’d) Quantify Sensitivity Ratio (SR), Differences in SR based A more informative approach than unweighted SR value for
contributions of each weighted—also called on the weighting factor those variables that have sufficient information to define a
exposure variable to total | Sensitivity Score weighting factor (e.g., coefficient of variation or range).
risk

2 Quantify relative 1-D MCA for variability | Compare mean with The % contribution of each exposure pathway will vary as a
contributions of exposure | or uncertainty, with high- and low-end function of the variability (or uncertainty) in the inputs;
pathways to risk outputs specifying % percentiles of % exposure pathways that appear to be relatively minor

contribution of exposure | contribution to risk contributors on average, or from Tier 1 assessment, may in fact

pathways be a major contributor to risk under certain exposure scenarios.
The likelihood that a pathway is nonnegligible (e.g., > 5%) can
be useful information for risk managers.

2 Quantify relative 1-D MCA for variability | Nonlinear relationship Easy and intuitive approach that may identify relationships that

contributions of exposure
variables to risk

or uncertainty,
Graphical analysis—
scatterplots of inputs
and output

other methods could miss. May suggest transformations of
input or output variables (e.g., logarithms, power
transformations) that would improve correlation and regression
analyses.

1-D MCA, Correlation
Analysis using Pearson
and /or Spearman Rank

Very high or low
correlation coefficients

Differences between
relative rankings based
on Pearson and Spearman

Easy to implement with commercial software; rank orders the
variables based on the average contribution to variance.
Differences in magnitude of coefficients are expected between
Pearson and Spearman rank approaches, but relative order of
importance is likely to be the same.
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Table A-1. Overview of Sensitivity Analysis Methods Applicable in Tiers 1, 2, and 3 ofa PRA.

Tier Goal SA Method(s) What to Look For Rationale
1-D MCA, Multiple Very high or low Easy to implement with commercial software; gives
Linear Regression regression coefficients contribution to reduction in residual sum of squares (RSS)
Analysis (e.g., stepwise)
R? and adjusted R? for For risk equations with large sets of input variables, a small
total model subset of inputs may be able to explain the majority of the
variance.

2 Quantify relative 1-D MCA; same as Difference in relative Variables may contribute differently to the high-end of the risk
contributions of exposure | previous step, but for contributions for entire distribution, especially if the input variables are highly skewed.
variables to RME risk subset of risk risk distribution and the This situation would warrant a closer look at the assumptions
range distribution (e.g.,> 90" RME range of the risk regarding the estimate of the variance, differences in the upper

percentile) distribution tail (high-end percentiles) for alternative choices of probability
distributions, and assumptions associated with truncation
limits.

1-D MCA, Goodness- GoF result—rejection of A second method for identifying variables that contribute

of-fit, K-S or Chi- null (distributions are the differently at the high-end of the risk distribution. GoF test

square; Sort output as same) suggests the results should be interpreted with caution because a Monte

above; perform GoF on variable may be an Carlo simulation will generally yield large sample sizes (e.g.,

input distribution only, important contributing n=5,000 iterations), which is more likely to result in a positive

comparing subset of factor to the RME risk GoF test (i.e., rejection of the null).

input values estimate

corresponding with

high-end risk to subset

corresponding with

remainder of risk

distribution

3 Quantify relative 2-D MCA, same For variability, evaluate The results of a sensitivity analysis depend on the question that

contributions of exposure
pathways and variables
to variability and
uncertainty in risk

sensitivity analysis
methods as Tier 2

inner loop values; for
parameter uncertainty,
evaluate outer loop
values

is being asked about the risk estimate—are we interested in
variability or uncertainty? The major sources of variability in
risk may point to a different set of input variables than the
major sources of uncertainty in risk.
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Resource Allocation

Decisions regarding allocation of future resources and data collection efforts to reduce lack of
knowledge generally should take into consideration the most influential input factors in the model, and
the cost of gaining new information about the factors. Sensitivity analysis is a key feature of determining
the expected value of information (EVOI) (see Appendix D). Once a sensitivity analysis is used to
identify an input variable as being important, the source of its variability generally should be determined.
If an input factor has a significant uncertainty component, further research and/or data collection can be
conducted to reduce this uncertainty. Reducing major sources of uncertainty, such as the most relevant
probability model for variability or the parameter estimates for the model, will generally improve
confidence in the model output, such as the estimated 95" percentile of the risk distribution. An input
factor may contribute little to the variability in risk, but greatly to the uncertainty in risk (e.g., the
concentration term). Likewise, a variable may contribute greatly to the variability in risk, but, because
the data are from a well characterized population, the uncertainty is relatively low (e.g., adult tap water
ingestion rate).

An example of the output from a 2-D MCA of uncertainty and variability (see Appendix D) is
shown in Figure A-1. Assume for this example that the decision makers choose the 95" percentile risk as
the RME risk, and that a sensitivity analysis is run to identify and quantitatively rank the important
source(s) of parameter uncertainty. The bar chart (top panel) in Figure A-1 indicates that the mean soil
concentration contributes most to the uncertainty in the 95" percentile risk estimate. In addition, the
mean exposure frequency is a greater source of uncertainty than the standard deviation exposure
frequency. Since both the sample size and variance impact the magnitude of the confidence limits for an
arithmetic mean soil concentration, one way to reduce the confidence limits (i.e., the uncertainty) would
be to collect additional soil samples. As shown by the box-and-whisker plots (bottom panel) in
Figure A-1, increasing the sample size (from #n=25 to n=50) reduced the 90% confidence limits for the
95™ percentile risk to below 1E-05, assuming the additional observations support the same estimate of the
mean and standard deviation as the original sample.

Although the uncertainty in a risk estimate can be reduced by further data collection if the
sensitive input distribution represents uncertainty, this is not necessarily true for input distributions that
represent variability. For example, variability in the distribution of body weights can be better
characterized with additional data, but the coefficient of variation (i.e., standard deviation divided by the
mean) will not in general be reduced.

Risk Communication

Even if additional data are not collected to reduce uncertainty, identifying the exposure factors
that contribute most to risk or hazard may be useful for risk communication. For example, assume that
the input for exposure frequency has the strongest effect on the risk estimate for a future recreational
open space. Further examination of this exposure variable reveals that the wide spread (i.e., variance) of
the PDF is a result of multiple users (e.g., mountain bikers, hikers, individuals who bring picnics, etc.) of
the open space who may spend very different amounts of time recreating. As a result of this analysis, the
decision makers and community may decide to focus remediation efforts on protecting the high-risk
subpopulation that is expected to spend the most time in the open space.

After determining which contaminants, media, and exposure pathways to carry into a PRA,
numerical experiments generally should be performed to determine the sensitivity of the output to various
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distributions and parameter estimates that may be supported by the available information. Variables that
do not strongly affect the risk estimates may be characterized with point estimates without significantly
altering the risk estimates. This guidance document does not recommend a quantitative metric or rule of
thumb for determining when a variable strongly affects the output; this would generally be determined on
a case-by-case basis. A qualitative or quantitative analysis may be used depending on the complexity of
the risk assessment at this point. For example, incidental ingestion of soil by children is often an
influential factor in determining risk from soil, a factor recognized by risk assessors. This recognition is
a de facto informal sensitivity analysis. An array of quantitative techniques is also available, ranging
from something as simple as comparing the range of possible values (i.e., maximum-minimum) for each
variable, to more complex statistical methods such as multiple regression analysis. Several of these
methods are discussed in more detail in this appendix.

Often, sufficient information is available to characterize a PDF for a minor variable without
significant effort. This situation raises a question of whether the variable should be characterized with a
point estimate or a PDF. The results of sensitivity analysis should be viewed as supplemental
information, rather than an absolute rule for determining when to use a PDF. There are at least two
issues to consider related to risk communication. First, the risk communication process may be
facilitated by narrowing the focus of the evaluation to the key factors. More attention can be given to the
discussion of key variables quantified by PDFs by describing the minor variables with point estimates.
However, the decision to use a point estimate should be balanced by considering a second issue regarding
perception and trust. There may be a concern that by reducing sources of variability to point estimates,
there would be a reduction (however small) in the variability in risk, especially if multiple small sources
of variability add up to a nonnegligible contribution. To address these concems, it may be prudent to
leave the PDFs in the calculations despite the results of a sensitivity analysis.
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Figure A-1. Results of 2-D MCA in which parameters of input distributions describing variability are assumed
to be random values. Results of a sensitivity analysis (top graph) suggest that more than 50% of the uncertainty
in the 95™ percentile of the risk distribution is due to uncertainty in the arithmetic mean concentration in soil.
The bottom graph gives box-and-whisker plots for the 95™ percentile of the risk distribution associated with
Monte Carlo simulations using different sample sizes (n=25 and n=50). For this example, the whiskers represent
the 5™ and 95™ percentiles of the distribution for uncertainty, otherwise described as the 90% confidence interval
(CI). For n=25, the 90% CI is [1.0E-06, 2.2E-05]; for n=50, the 90% CI is reduced to [1.2E-06, 9.5E-06].
While increasing n did not change the 50" percentile of the uncertainty distribution, it did provide greater
confidence that the 95" percentile risk is below 1x107.
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A.2.0 CoMMON METHODS OF SENSITIVITY ANALYSIS

Of the numerous approaches to sensitivity
analysis that are available (see Exhibit A-3), no single
approach will serve as the best analysis for all
modeling efforts. Often, it will make sense to apply
multiple approaches. The best choice(s) for a Relative contribution of exposure pathways
particular situation will depend on a number of
factors, including the nature and complexity of the
model and the resources available. A brief
description of the more common approaches is

EXHIBIT A-3

SOME KEY INDICES OF SENSITIVITY ANALYSIS

e Inspection of risk equation
e  Sensitivity ratios (i.e., elasticity)

e  Sensitivity scores (i.e., weighted sensitivity

provided in this appendix. Sensitivity analysis need ratios)

not be limited to the methods discussed in this *  Graphical techniques with results of Monte
guidance, which focuses on the more common Carlo simulations (e.g., seatter plots)
approaches. A large body of scientific literature on *  Correlation coefficient (or coefficient of
various other methods is available (e.g., Iman et al., determination, °) (e.g., Pearson product
1988, 1991; Morgan and Henrion, 1990; Saltelli and ETE, [PEAAN (7 o)

Marivort, 1990; Rose et al., 1991; Merz, Small, and * Normalized multiple regression coefficient
Fischbeck, 1992; Shevenell and Hoffman 1993; e Goodness-of-fit test for subsets of the risk
Hamby, 1994; U.S. EPA, 1997). Any method used, distribution

however, generally should be documented clearly and
concisely. This includes providing all information
needed by a third party to repeat the procedure and
corroborate the results. Relevant information might include the following: exposure pathways and
equations; a table with the input variables with point estimates, probability distributions and parameters;
and tables or graphs giving the results of the sensitivity analysis and description of the method used. A
hypothetical example is presented in this appendix to illustrate how to apply and present the results of
selected approaches to sensitivity analysis.

Hypothetical Example of a Noncancer Risk Equation

To illustrate the application of sensitivity analysis concepts to Tier 1 and Tier 2, a hypothetical
risk assessment is presented based on the general equation for Hazard Index (HI) given by Equation A-1.
Note that HI is equal to the sum of the chemical-specific Hazard Quotient (HQ) values, so technically,
this example reflects exposures from a single chemical.

CxlxAEx EFxED 1
= b Equation A-1
BIWx AT RfD

The terms in Equation A-1 can be defined as follows: concentration in the i exposure medium (C,),
ingestion or inhalation rate of the i" exposure medium (I,), absorption fraction of chemical in the i"
exposure medium (AF,), exposure duration (ED), exposure frequency (EF), body weight (BW),

averaging time (AT=ED x 365 days/year), and reference dose (RfD).
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For this example, Hl is calculated as the sum of the exposures to adults from two exposure
pathways: tap water ingestion and soil ingestion. Equation A-2 gives the equation for HI while
Table A-2 gives the inputs for a point estimate assessment and a probabilistic assessment of variability.
(O, =, x AF )+ (C, x I, x AF,)) = EF x EDX 1
BIW x AT RID

HI=

Equation A-2

Table A-2. Point estimates and probability distributions for input variables used in the hypothetical example of HI
associated with occupational exposure via water and soil ingestion.

.Input Vz.lriable Point Estimate Probability Distribution Units

in Equation A-2 CTE RME Type Parameters
Concentration in Water (C_w) 40 40 point estimate 40 mg/L
Tap Water Ingestion Rate (I_w) 1.3 2.0 lognormal' [1.3,0.75] L/day
Absorption Fraction Water (AF_w) 0.30 0.50 beta? [2.0,3.0] unitless
Concentration in Soil (C_s) 90 90 point estimate 90 mg/kg
Soil Ingestion Rate (I_s) 0.05 0.10 uniform [0, 0.13] kg/day
Absorption Fraction Soil (AF_s) 0.10 0.30 beta? [1.22,4.89] unitless
Exposure Frequency (EF) 250 350 triangular [180, 250,350] [ days/yr
Exposure Duration (ED) 1 7 empirical’® see below years
Body Weight (BW) 75 75 lognormal' [74.6,12.2] kg
Averaging Time (AT) 365 2555 empirical® ED x 365 days
RfD,,’ 0.5 0.5 point estimate 0.5 mg/kg-day

"Parameters of lognormal distribution are [arithmetic mean, standard deviation].
*Parameters of beta distribution are [alpha, beta], with range defined by min=0 and max=1.0. Parameter conversions for
arithmetic mean and standard deviation are given in Table A-7.

*Parameters of empirical cumulative distribution function (ECDF) for ED ~ [min, max, {x}, {p}]=[0, 30, {0.08, 0.18, 0.30,
0.44,0.61, 0.84, 1.17, 1.72, 3.1, 6.77, 14.15, 23.94}, {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.975, 0.99}], where x is the
array of values and p is the array of corresponding cumulative probabilities.

*AT=ED x 365 for noncarcinogenic risks (Hazard Index).

’For simplicity, RfD,,,, is assumed to be applicable to the ingestion of the chemical in both water and soil.

A.2.1 TIER 1 APPROACHES

Approaches for sensitivity analysis in Tier 1 of a PRA are limited to calculations that are based
on changing point estimates. They are generally easy to perform and to communicate. As given by
Table A-1, goals for the sensitivity analysis in Tier 1 include quantifying the relative contributions of the
exposure pathways, identifying potential nonlinear relationships that may exist between input variables
and the risk estimate, and rank ordering the relative contribution of exposure variables to variability or
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uncertainty in the risk estimate. This last goal may be the most difficult to achieve due to the limitations
associated with the point estimate methodology. Methods are applied to the hypothetical example
presented above (Section A.2.0) in order to demonstrate the inherent limitations of the Tier 1 approaches
in some situations.

A.2.1.1 PERCENTAGE CONTRIBUTION OF EXPOSURE PATHWAYS TO TOTAL RisK

For cancer and noncancer risk assessments central tendency exposure (CTE) and RME risk is
typically calculated as the sum of risks from multiple exposure pathways. Risks may be dominated by
one or two exposure pathways, which can be determined through a simple calculation as shown below.
The relative contributions of exposure pathways are likely to differ between the CTE risk and RME risk.

The point estimates in Table A-2 were applied to Equation A-2 to obtain CTE and RME point
estimates of HI. Table A-3 gives the percent contributions of soil ingestion and tap water ingestion using
Equations A-3 and A-4. Tap water ingestion contributes at least 90% to HI, and the total HI is greater
than 1.0 for both CTE and RME point estimates. If 1.0 is the level of concern for HI, and a decision was
made to explore variability and uncertainty in a probabilistic analysis, this result might support
prioritizing the evaluation of data and assumptions associated with the tap water ingestion pathway.

Table A-3. Percent contribution of exposure pathways to HI for the example in Section A.2.

Exposure CTE Point Estimate RME Point Estimate
Pathway
HI % of total® HI % of total
Soil Ingestion 0.02 6 % 0.15 13 %
Tap Water Ingestion 0.28 94 % 1.02 87 %
Total 0.30 100 % 1.17 100 %

'"Equation A-3: HI,, = HIL, + HL ..
*Example using Equation A-4: % of total RME HI for soil ingestion = (0.15 / 1.17) x 100% = 13%.

n
HI, = Z HI, Equation A-3
i=1
o HI, ,
Fercent Contribution, = = . % 100870 Equation A-4
total

In this example, the choice of CTE and RME point estimates reflects an effort to explore
variability in HIL, rather than uncertainty. Even if the concentration terms represent the upper confidence
limit on the mean (e.g., 95% UCL), the point estimates chosen to represent the CTE and RME for other
exposure variables reflect assumptions about the variability in exposures. There is uncertainty that the
choices actually represent the central tendency and reasonable maximum exposures. To explore this
uncertainty, alternative choices for CTE and RME may have been selected. This type of exploration of
uncertainty in Tier 1 may also be viewed as a form of sensitivity analysis. The percent contribution of
exposure pathways could be recalculated, and the sensitivity ratio approaches discussed below may also
be applied.
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A.2.1.2 INSPECTION OF Risk EQUATION

For many Superfund risk assessments, risk equations can be characterized as relatively simple
algebraic expressions involving addition, multiplication, and division of input variables. The term
“product-quotient” model is often applied to describe equations such as Equation A-1. For these risk
equations, the input variables that are likely to contribute most to the variability or uncertainty in risk can
be identified by inspection. In addition, inspection of the risk equation can help to identify which
sensitivity analysis methods are unlikely to reveal the relative importance of the input variables. This
concept is illustrated by comparing the results of the sensitivity ratio approach (Section A.2.1.3) with the
Tier 2 approaches (Section A.2.2) applied to the hypothetical example in Section A.2.0.

Some risk equations can be more complex, involving conditional probabilities, or expressions
with exponents (e.g., y=x°, or y=exp(1-x)). In these cases, the Tier 1 sensitivity analysis methods may
be effective and highlighting the variables that contribute most to the risk estimates.

A.2.1.3 SENnsITIVITY RATIO (SR)

A method of sensitivity analysis applied in many different models in science, engineering, and
economics is the Sensitivity Ratio (SR), otherwise know as the elasticity equation. The approach is easy
to understand and apply. The ratio is equal to the percentage change in output (e.g., risk) divided by the
percentage change in input for a specific input variable, as shown in Equation A-5.

(M} « 100%
SR = b Equati
= quation A-5

X, -X
{#J « 100%
1

, = the baseline value of the output variable using baseline values of input variables
the value of the output variable after changing the value of one input variable
the baseline point estimate for an input variable

= the value of the input variable after changing X,

where,

[
Il

Y
Y
X
X

[N

Risk estimates are considered most sensitive to input variables that yield the highest absolute value for
SR. The basis for this equation can be understood by examining the fundamental concepts associated
with partial derivatives (see Section A.3.2). In fact, SR is equivalent to the normalized partial derivative
(see Equation A-12).

Sensitivity ratios can generally be grouped into two categories—local SR and range SR. For the
local SR method, an input variable is varied by a small amount, usually £5% of the nominal (default)
point estimate, and the corresponding change in the model output is observed. For the range sensitivity
ratio method, an input variable is varied across the entire range (plausible minimum and maximum
values). Usually, the results of local and range SR calculations are the same. When the results differ, the
risk assessor can conclude that different exposure variables are driving risk near the high-end (i.e.,
extreme tails of the risk distribution) than at the central tendency region.
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Demonstration of the Limitations of SR Approach

Although SR is a relatively simple and intuitive approach, it does not provide useful information
under certain conditions for the more common risk equations. To demonstrate the limitations, first
Equation A-5 is applied to the hypothetical example given in Section A.2.0. The results are then
extended to a more general case of any of the more common risk models that involve the products of
terms (i.e., multiplicative model) or the sum of terms (i.e., additive model).

Table A4 presents an example of the local SR and range SR approach applied to the set of RME
inputs given in Table A-2. For the local SR, each input was increased by 5% (i.e., A=+5%), while for the
range SR, each input was increased by 50%. Inputs for exposure frequency were truncated at the
maximum value of 365 days/year, which represents a 4.29% increase over the nominal RME value of
350 days/year.

Table A-4. Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in

Section A.2.0. Includes both soil ingestion and tap water ingestion pathways.
Local SR Range SR
Nominal = =
Input Variable , X ([){n;/l;;; (A=+50%) (A =+50% or max)
. . 1
in Equation A-2 value (X,) X A in HI SR X A in HI SR
: (%) : (%)

Tap Water Ingestion Rate, I w 2.0 2.1 4.35 0.87 3.0 43.5 0.87
(L/day)
Absorption Fraction Water, 0.50 0.525 4.35 0.87 0.75 43.5 0.87
AF_w (unitless)
Soil Ingestion Rate, I_s (kg/day) 0.100 0.105 0.65 0.13 0.150 6.5 0.13
Absorption Fraction Soil, AF_s 0.30 0.315 0.65 0.13 0.45 6.5 0.13
(unitless)
Exposure Frequency, EF 350 3657 4.29 1.00 3657 4.29 1.00
(days/yr)
Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00
Body Weight, BW (kg) 75 78.75 -4.46 -0.89 112.5 -33.33 - 0.67

'Only input variables that represent variability are included. Concentrations are point estimates of uncertainty. Averaging time is
a function of exposure duration. RfD is a fixed point estimate.
*Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.

The following observations can be made from these results:
» In decreasing order of sensitivity:
Local SR (A = 5%) rankings: EF>BW >1 w=AF w>1 s=AF s>ED
Range SR (A = 50%) rankings: EF >1 w=AF w>BW>1 s=AF s>ED

» EF is the most sensitive variable with an SR value of 1.0. Since EF is a variable in the numerator
for both exposure pathways, this result is to be expected, as will be explained below.
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» ED yields an SR=0, suggesting it does not contribute to the HI estimate. Upon closer inspection
of the risk equation, it is apparent that ED occurs in the numerator of Equation A-2, as well as in
the denominator (AT=ED x 365). Thus, ED effectively cancels out of the product quotient
model and does not effect the estimate of HI.

» BW, the only variable in the denominator of the risk equation, is also the only variable to yield a
different SR value when comparing the local and range SR approaches. Thus, BW is the only
variable for which SR depends on the percent change in the input (A).

» BWa is the only negative SR value, indicating that HI and BW are inversely related. This is true
in general for any variable in the denominator of a product quotient model.

» For variables unique to the water ingestion pathway (I w, AF_w), SR=0.87. Similarly, for
variables unique to the soil ingestion pathway (I s, AF s), SR=0.13 These SR values are exactly
the same as the percent contributions of the tap water ingestion pathway and soil ingestion
pathway to HI (see Table A-3).

Since tap water ingestion is the dominant pathway (i.e., 87% of RME HI), a reasonable strategy
for the Tier 1 sensitivity ratio approach might be to limit the subsequent probabilistic analysis in Tier 2 to
the tap water ingestion pathway; so that input variables unique to the soil ingestion pathway would be
characterized by point estimates. For this relatively simple example, this would mean that soil ingestion
rate (I_s) and absorption fraction from soil (AF_s) would be described by point estimates instead of
PDFs. The question to address would then become—Of the exposure variables in the tap water ingestion
pathway, which ones contribute most to HI? A sensitivity ratio approach was applied to the tap water
ingestion pathway to address this question. The results are presented in Table A-5.

Table A-5. Results of the Sensitivity Ratio (SR) approach applied to the hypothetical example of RME HI given in
Section A.2.0. Includes only tap water ingestion pathway.

Local SR Range SR
Input Variable , X N‘;‘;}‘;‘l (A=+5.0%) (A =+50% or max)
in Equation A-2' . .
value (X,) X, A'in HI SR X, A in HI SR
(%) (%)

Tap Water Ingestion Rate, [ w 2.0 2.1 5.0 1.00 3.0 50 1.00
(L/day)
Absorption Fraction Water, 0.50 0.525 5.0 1.00 0.75 50 1.00
AF_w (unitless)
Exposure Frequency, EF 350 365> 4.29 1.00 3657 4.29 1.00
(days/yr)
Exposure Duration, ED (years) 7 7.35 0.00 0.00 10.5 0.00 0.00
Body Weight, BW (kg) 75 78.75 -4.46 -0.89 112.5 - 3333 -0.67

'Only input variables that represent variability are included. Concentrations are point estimates of uncertainty. Averaging time is
a function of exposure duration. RfD is a fixed point estimate.
*Maximum EF of 365 days/yr represents a 4.29% change in the nominal RME value of 350 days/yr.
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The following observations can be made from these results:

» In decreasing order of sensitivity:
Local SR (A = 5%) rankings: I w= AF_w = EF >BW > ED
Range SR (A = 50%) rankings: I w= AF_w = EF > BW > ED

» SR values for variables in the numerator (I_w, AF_w, and EF) are all equal to 1.0, so the SR
approach suggests that they contribute equally to the HI estimate.

» BW values are the same as in Table A-4. They are negative, and the values change as a function
of the percent change in the nominal RME value (A).

Tables A-4 and A-5 suggest that the SR approach provides essentially the same information
about sensitivity as other Tier 1 methods. Specifically, inspection of the risk equation reveals that ED
does not contribute to HI. In addition, for pathway-specific variables in the numerator, like ingestion
rates and absorption fractions, SR values are equal to the percent contributions of the exposure pathways.
This actually reflects the fact that each factor in the numerator of a multiplicative equation has an SR of
1.0.

The results of the SR approach applied to the example above can be generalized to all
multiplicative and additive risk equations, as discussed below.

Generalizing the Limitations of the SR Approach

In many cases, the general equation for SR (Equation A-5) will give values that can be
determined a priori, without doing many calculations. To understand why this is true, it is useful to
simplify the algebraic expression given by Equation A-5. Let A equal the percentage change in the input
variable, X,. For SR calculations, A may be either positive or negative (e.g., 5% for local SR; +100%
for range SR), and the new value for the input variable (i.e., X,) is given by Equation A-6.

X2

X, + (X, xA)

Equation A-6
X, x(1+A)

Therefore, the denominator in Equation A-5 reduces to A:

Ko—¥1 O+ A -3 3 (1+.ﬂl)—1_‘ﬁ
> > 1
and Equation A-5 reduces to Equation A-7:
1 Y, - ¥
BR= i [#] Equation A-7
A ¥
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Equation A-7 can be used to evaluate SR for different types of exposure models in which the
intake equation is generally expressed as a simple algebraic combination of input variables. Solutions to
SR calculations for input variables in both multiplicative and additive equations are given in Table A-6.
For any such risk equation, the solution will fall into one of the five categories given by Exhibit A-4.

EXHIBIT A-4

CATEGORIES OF SOLUTIONS FOR SENSITIVITY RATIOS OF
MULTIPICATIVE OR ADDITIVE EQUATIONS

Case1l SR s a constant (e.g., 1.0). SR is independent of the choice of nominal (default) values
for input variables and the choice of A.

Case2 SR is aconstant determined only by the nominal values for the input variables. SR is
independent of the choice of A.

Case 3 SR is constant determined only by the choice of A. SR is independent of the nominal
values for the input variables.

Case 4 SR is a function of both the nominal values for the input variables and the choice of A.

Case5 SR is 0. The variable does not contribute to the risk estimate.

Table A-6. Examples of algebraic solutions to Sensitivity Ratio calculations for additive and multiplicative forms of
risk equations.' 2

Equation Type _ _ _ =
(Output = Y, Inputs = A, B, C, D) SRa SRp SRc SKo
tive i A+ B A E 1
el B Y
C A+B |A+EB 1+ A
2) Additive in o B Lo A | - = - =
Denominator C+ D C(l"‘ﬂ)"‘D D(1+ﬂ)+c
e 1y 222 e [ | A
C 1+ A
e A 1 1
Kl ) TR IO B ST
O3 P) 1+ 4 144

'Sensitivity Ratio for input variable A for an equation that is additive in the numerator: SR,=A / (A + B).

*A=% change in input variable. For example, A for C=[(C, - C,)/C,] x 100%, where C,=the original point estimate and C,=the
modified point estimate. Similarly, C,=C, (1 + A).

*NA=not applicable because the variable is not in the equation.
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The following observations can be made for the four forms of the risk equation, based on one of the five
cases described in Exhibit A-4:

(1) Additive in Numerator

» Case 2: SR values for variables in the numerator depend exclusively on the nominal point
estimates for all variables in the numerator. The values are independent of the choice of percent
change in the inputs (A).

» Case 3: SR values for variables in the denominator depend exclusively on A, and are negative
(i.e., inversely related to the output). Also, the lower the choice for A, the higher the resulting
SR values. Therefore, SR is somewhat arbitrary, especially for the range SR approach since
input variables may have different plausible minimum and maximum values.

(2) Additive in Denominator

» Case 1: SR values for variables in the numerator are always equal to 1.0. Since they are
independent of the nominal values and A, there is no way to distinguish the relative contributions
to the output.

» Case 4: SR values for variables in the denominator are a function of both the nominal values of
variables in the denominator and A.

(3) Multiplicative in Numerator and (4) Multiplicative in Denominator

» Case 1: SR values for variables in the numerator are always equal to 1.0. Since they are
independent of the nominal values and A, there is no way to distinguish the relative contributions
to the output.

» Case 3: SR values for variables in the denominator depend exclusively on the A, and are negative
(i.e., inversely related to the output). Also, the lower the choice for A, the higher the resulting
SR values. Therefore, SR is somewhat arbitrary, especially for range SR since input variables
may have different plausible minimum and maximum values.

These generalized results highlight a major limitation in the use of the SR approach for obtaining
information from sensitivity analysis. For simple exposure models in which the relationship between
exposure and risk is linear (e.g., multiplicative), the ratio offers little information regarding the relative
contributions of each input variable to the risk estimate. In many cases, all of the input variables will
have the same constant, either equal to 1.0 (in the case of a single exposure pathway) or equal to the
relative contributions of the exposure pathways. For more complex models that combine additive,
multiplicative, and nonlinear relationships between inputs and outputs (e.g., environmental fate and
transport models, pharmacokinetic models), the ratio is likely to be an effective screening tool for
identifying potentially influential input variables and assumptions.

Another difficulty with the SR approach is that it generally requires an assumption that the input
variables are independent. Two variables may actually be positively correlated (e.g., high values of X
correspond with high values of X,) or negatively correlated (e.g., high values of X, correspond with low
values of X,). If input variables are correlated, holding the value for one variable fixed while allowing
the other to vary may produce misleading results, especially with the range sensitivity ratio approach.
For example, it may not be realistic to hold body weight fixed at a central tendency while allowing skin
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surface area to vary from the minimum to maximum values. An improvement over the sensitivity ratio
approach would be to allow correlated input variables to vary simultaneously.

A.2.1.4 SENSITIVITY SCORE

A variation on the sensitivity ratio approach may provide more information from a Tier 1
sensitivity analysis, but it requires that additional information be available for the input variables. The
sensitivity score is the SR weighted by a normalized measure of the variability in an input variable (U.S.
EPA, 1999). Examples of normalized measures of variability include the coefficient of variation (i.e.,
standard deviation divided by the mean) and the normalized range (i.e., range divided by the mean), as
given by Equation A-8.

. o (max- min) :
Sensttivity Score= SEx — ar SRy —— Equation A-8
# #

By normalizing the measure of variability (i.e., dividing by the mean), this method effectively weights the
ratios in a manner that is independent of the units of the input variable, and provides a more robust
method of ranking contributions to the risk estimates than the SR alone. This approach does require that
the coefficient of variation or range can be calculated for each variable. Tables A-7 and A-8 present the
results of the sensitivity scores based on the CV applied to the hypothetical example from Section A.2.0.

Table A-7. Calculation of coefficient of variation (CV = SD / Mean) for the hypothetical example of RME HI given
in Section A.2.0.

I?npgzr:tl:)anb::_’;( Probability Distribution’ Mean® SD? SD(;IY/Ie:an

Tap Water Ingestion Rate, I w (L/day) lognormal (1.3, 0.75) 1.3 0.75 0.58
Absorption Fraction, Water, AF_w beta (2.0, 3.0) 0.4 0.2 0.50
(unitless)

Soil Ingestion Rate, I s (kg/day) uniform (0, 0.13) 0.065 0.038 0.582
Absorption Fraction, Soil, AF_s (unitless) | beta (1.22,4.89) 0.20 0.15 0.75
Exposure Frequency, EF (days/yr) triangular (180,250, 350) 260 35 0.13°
Exposure Duration, ED (years) empirical CDF (see Table 1.75 3.86 2.21

A-2 for parameters)

Body Weight, BW (kg) lognormal (74.6, 12.2) 74.6 12.2 0.16

'Only input variables that represent variability are included. Concentrations are point estimates of uncertainty. Averaging
time is a function of exposure duration. RfD is a fixed point estimate.

Beta (a, b): mean=a / (a+b) and SD = ((a x b) / [(a + b)"2 x (a+b+1)])"0.5)

Uniform (min, max): mean = (min + max)/2 and SD = ((1/12)"0.5) x (max - min) = 0.289 x (max - min)

Triangular (min, mode, max): mean = (min + mode + max)/3 and SD = (1/18) x (min"2 + mode”2 + max”"2 - min X max - min
x mode - mode X max)

Empirical CDF ({x}, {p}): mean and SD were estimated by Monte Carlo simulation.

*Mean=arithmetic mean; SD=arithmetic standard deviation
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Table A-8. Results of the Sensitivity Score (Score) approach applied to the hypothetical example of RME HI given
in Section A.2.0. Calculations for Sensitivity Ratio (SR) and Coefficient of Variation (CV) are given in Table A-4
and Table A-7, respectively.

Local SR Range SR

Input Variable , X N‘;’;}’;‘l cv (A=+5%) (A=+50%)

. . 1

in Equation A-2 value (X,) (Table A-7) SR Seore? SR Seore?

(Table A-4) (Table A-4)

Tap Water Ingestion 2.0 0.58 0.87 0.50 0.87 0.50
Rate, I w (L/day)
Absorption Fraction, 0.50 0.50 0.87 0.44 0.87 0.44
Water, AF w
(unitless)
Soil Ingestion Rate, 0.100 0.58 0.13 0.06 0.13 0.06
I s (kg/day)
Absorption Fraction, 0.30 0.75 0.13 0.10 0.13 0.10
Soil, AF_s (unitless)
Exposure Frequency, 350 0.13 1.00 0.13 1.00 0.13
EF (days/yr)
Exposure Duration, 7 2.21 0.00 0 0.00 0
ED (years)
Body Weight, BW 75 0.16 -0.89 -0.14 -0.67 -0.11
(kg)

'Only input variables that represent variability are included. Concentrations are point estimates of uncertainty. Averaging time is
a furiction of exposure duration. RfD is a fixed point estimate.

’Score=SR x CV (see Equation A-8)

The following observations can be made from these results:
» In decreasing order of sensitivity:

- Score based on local SR (A =5%):1 w>AF w>BW>EF>AF s>IR s>ED
- Score based on range SR (A =50%): 1 w> AF w>EF>BW >AF s>1IR s>ED

» Compared with the SR approach alone in which sensitivity can only be expressed for exposure
pathways, the sensitivity score approach provides a measure of sensitivity for exposure variables
within each exposure pathway.

» Although ED has the highest CV, it continues to have no contribution to the HI.

> If Tier 1 sensitivity analysis is based on the sensitivity score, the highest ranked
variables are generally those with the highest CV in the exposure pathway that
contributes the most to the total risk (HI). For this hypothetical example, I w and
AF_w are the two highest ranked variables.
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A.2.2 TIER?2 APPROACHES

Approaches for sensitivity analysis in Tier 2 of a PRA utilize the results of Monte Carlo
simulations, which allows multiple input variables to vary simultaneously. The methods are relatively
simple to perform with spreadsheets or commercial statistical software. The results are generally easy to
communicate, although the details of the methodology are more complex than Tier 1 approaches. As
given by Table A-1, goals for the sensitivity analysis in Tier 2 are the same as Tier 1:quantifying the
relative contributions of the exposure pathways, identifying potential nonlinear relationships that may
exist between input variables and the risk estimate, and rank ordering the relative contribution of
exposure variables to variability or uncertainty in the risk estimate. In addition, since the output is a
distribution, Tier 2 sensitivity analysis methods can also utilize graphical techniques to observe nonlinear
relationships, as well as evaluate potential changes in relative importance of variables and assumptions
for risks in the RME risk range. Methods are applied to the hypothetical example presented in
Section A.2.0 in order to demonstrate the advantages over the Tier 1 methods.

A.2.2.1 GRAPHICAL TECHNIQUES

Simple scatter plots of the simulated input and output (e.g., risk vs. exposure frequency, or risk
vs. arithmetic mean soil concentration) can be used to qualitatively and quantitatively evaluate influential
variables. A “tight” best-fit line through the scatter plot, as indicated by the magnitude of the 7, suggests
that a variable may significantly influence the variance in risk. Hypothetical scatter plots used to identify
sensitive and insensitive variables are shown in Figure A-2. Another method for visualizing the
relationship between all of the inputs and outputs is to generate a scatterplot matrix (Helsel and Hirsch,
1992). This graphic shows both histograms and scatter plots for all variables on the same page.

Figure A-3 illustrates scatter plots for the 1-D MCA simulations associated with the example
from Section A.2.0. Based on the 7 values (i.e., coefficient of determination for simple linear regression
analysis), the relationship between HI and I w is very strong (r* = 0.47) while the relationship between
HI and I s is very weak (" < 0.01), suggesting that HI is more sensitive to variability in [ w than I s.

A.2.2.2 CORRELATION COEFFICIENTS

The variance in a risk estimate from a Monte Carlo simulation is due to the variance in the
probability distributions used in the risk equation. It is commonly said that a Monte Carlo model
propagates sources of variability simultaneously in a risk equation. Numerous statistical techniques,
known collectively as correlation analysis and regression analysis, can be applied to a linear equation to
estimate the relative change in the output of a Monte Carlo simulation based on changes in the input
variables. Examples of metrics of sensitivity include the simple correlation coefficient, the rank
correlation coefficient, and a variety of coefficients from multiple regression techniques. The underlying
assumptions associated with these approaches are discussed in greater detail in Section A.3. As
explained in Section A.3.3.1, correlation coefficients and regression coefficients are based on different
interpretations of the input variables, but they can be calculated with similar equations.

When the output distribution is compared with the distribution for one input variable at a time,
two of the more common approaches are to calculate the Pearson product moment correlation and the
Spearman rank correlation. Correlation analysis with one input variable will generally yield reasonable
results when the input variables are sampled independently in a Monte Carlo simulation. Some statistical
packages offer the correlation coefficient as an index of sensitivity, so it is important to identify which
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coefficient is being calculated. Crystal Ball® and @Risk can be used to calculate the Spearman rank
correlation, which tends to be more robust when the relationships between inputs and outputs are
nonlinear. If the relationships are linear, such as with the product quotient models presented in this
appendix, the two metrics of correlation will yield similar rankings of input variables. Rank correlation
coefficients shown in Crystal Ball® and @Risk are calculated by the standard method provided in most
statistics texts. Crystal Ball® also indicates that sensitivity can be determined as contribution to variance.
This is not the relative partial sum of squares techniques discussed in Section A.3.3.2 (Equation A-19).
Instead, Crystal Ball® calculates the contribution to the variance by squaring the rank correlation
coefficients and normalizing them to 100%. Many other commonly used commercial software packages
will perform Spearman rank correlation. Pearson product moment correlations () can be calculated in
Microsoft Excel using the trendline feature in a scatter plot chart, or by using the function Correl(X
array, Y array), where X array corresponds with the Monte Carlo simulation of an input variable, and Y
array corresponds with the output of the simulation.

Figure A4 illustrates results of the correlation analysis for the 1-D MCA simulations associated
with the example from Section A.2.0. The graphics were generated using Crystal Ball® 2000. The
results are summarized in Table A-9. If the model output variable (e.g., HI) and input variable are highly
correlated, it means that the output is sensitive to that input variable. By squaring the coefficient, the
results can be expressed in terms of the percentage contribution to variance in the output (Figure A4, top
panel). To determine if the correlation is positive or negative, the correlation coefficient should not be
squared (Figure A-4, bottom panel). For risk equations, in general, variables in the numerator of the
equation (ingestion rate, absorption fraction, exposure frequency, etc.) will tend to be positively
correlated with risk, while variables in the denominator (body weight) will tend to be negatively
correlated with risk. The greater the absolute value of the correlation coefficient, the stronger the
relationship.

Table A-9. Results of Tier 2 sensitivity analyses applied to hypothetical example in Section A.2.0: Pearson product
moment correlations and Spearman rank correlations.'

Product Moment Spearman Rank
Correlation Correlation?
Exposure Variable

r  x 100% r r x 100% nr(;r;nfgg;?
Tap Water Ingestion Rate, I w (L/day) 0.644 41.4 0.603 36.3 39.5
Absorption Fraction Water, AF_w (unitless) 0.583 34.0 0.666 44 .4 48.3
Body Weight, BW (kg) -0.216 4.7 -0.229 5.2 5.7
Exposure Frequency, EF (days/yr) 0.174 3.0 0.167 2.8 3.0
Absorption Fraction Soil, AF_s (unitless) 0.109 1.2 0.149 2.2 2.4
Soil Ingestion Rate, I s (g/day) 0.061 0.4 0.099 1.0 1.1
Exposure Duration, ED (years) 0.010 0.0 0.010 0.0 0.0

"Monte Carlo simulation using Crystal Ball® 2000, Latin Hypercube sampling, and 5000 iterations.

*Crystal Ball® 2000 output includes Sgearman rank correlations, 7, and normalized 1 values, calculated by dividing each 77 value
by the sum of all the 7 values (i.e., 0.920 in this example). Figure A-4 illustrates the » and normalized r*"values for the

Spearman rank correlation analysis.
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Figure A-2. Scatterplots of simulated random values from a 1-D MCA of variability. The output from the
model is a contaminant concentration in soil (C) that corresponds with a prescribed (fixed) level of risk for a
hypothetical population (based on Stern, 1994). For each iteration of a 1-D MCA simulation, random values
were simultaneously selected for all model variables and the corresponding concentration (C) was calculated.
Inputs were simulated as independent random variables. Scatterplots of 500 consecutive random values and
estimates of C are shown for two input variables: relative absorption fraction, RAF (top graph); and mass fraction
of dust as soil, F (bottom graph). There is a moderate, indirect relationship between C and RAF (r’=0.34),
compared with the weak relationship between C and F (r’=0.02), suggesting that the model output (C) is more
sensitive to variability in RAF than F.
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Figure A-3. Scatterplots of simulated random values from a 1-D MCA of variability for example in Section
A.2.0. The output from the model is HI. For each iteration of a 1-D MCA simulation, random values were
simultaneously selected for all model variables and the corresponding HI was calculated. Inputs were simulated
as independent random variables. Scatterplots of 250 consecutive random values and estimates of HI are shown
for two input variables: soil ingestion rate, I s (top graph); and tap water ingestion rate, I w (bottom graph).
There is a negligible relationship between HI and I_s (r* < 0.01), compared with the strong relationship between
HI and I_w (r’=0.47), suggesting that the model output (HI) is more sensitive to variability in I_w than I s. Best-
fit lines were generated with the Simple Linear Regression in Microsoft Excel’s trendline option for scatterplots;
r? values represent the coefficient of determination (see Section A.3).
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Figure A-4. Top panel - bar graph showing the * values (square of Spearman rank correlation coefficient), a
metric for the dependence of HI on exposure factors based on 1-D M CA for variability. Bottom panel - bar graph,
sometimes referred to as “tornado plot”, showing rank correlation coefficient. This graph is effective for showing
both the relative magnitude and direction of influence (positive or negative) for each variable. Abbreviations for
input variables are given in Table A-4. In this example, the variable with the greatest effect on HI is the absorption
fraction in water (AF_w), followed by the water ingestion rate (I_w). Concentration does not influence variability
because, in this example, long-term average concentration is characterized by a point estimate (i.e., 95% UCL),
rather than a probability distribution. Exposure duration does not influence variability because variability in ED is
expressed in both the numerator (ED) and denominator (AT=ED x 365 for noncarcinogenic effects), and cancels
out. Output was generated with Crystal Ball®, which calculates the contribution to variance by squaring the rank
correlation coefficient and normalizing to 100%.
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In this example, seven exposure variables are used to characterize variability in HL. The
remaining variables in the risk equation (i.e., concentration terms, and RfD) are characterized by point
estimates. Because point estimates do not vary in a Monte Carlo simulation, they do not contribute to the
variance in the output. This result does not mean that concentration is an unimportant variable in the risk
assessment. Concentration may still contribute greatly to the uncertainty in the risk estimate. A
sensitivity analysis of parameter uncertainty in a risk equation can be explored using iterative
simulations, such as with 2-D MCA.

Results of the Pearson correlation and Spearman rank correlation give similar rankings of the
input variables, with absorption fraction of water (AF_w) and tap water ingestion rate (I w) being the
two dominant exposure variables. Pearson correlations suggest that I w is the most sensitive variable
(r =0.644), whereas the highest Spearman rank correlation is for AF_w (» = 0.603). This may reflect the
fact that I w is characterized by an untruncated lognormal distribution, whereas AF_w is bounded
between 0 and 1.0. The effect on the correlations of the occasional high-end value for I w generated
from random sampling of the lognormal distribution will tend to be expressed by Pearson correlations,
but muted by the Spearman rank correlations.

A comparison of the Tier 1 and Tier 2 results is given below:

> Tier 1, Sensitivity Ratios:
- Local SR (A = 5%) rankings: EF>BW >1 w=AF w> [ s=AF s>ED
- Range SR (A = 50%) rankings: EF >1 w=AF w>BW>1 s=AF s>ED

> Tier 1, Sensitivity Scores:
- Score based on local SR (A =5%):1 w>AF w>BW >EF > AF s>IR s>ED
- Score based on range SR (A =50%): I w> AF w>EF>BW > AF s>IR s>ED

> Tier 2, Correlation Coefficients:
- Pearson: I w> AF w>BW >EF>AF s>1IR s>ED
- Spearman Rank: AF w>1 w>EF >BW > AF s>IR s>ED

The Tier 1 sensitivity scores and Tier 2 correlation coefficients yield similar results, suggesting
that, if sufficient information is available to estimate the coefficient of variation in the input variables, a
Tier 1 analysis can help to focus efforts on the variables that contribute most to the variance in risk. By
contrast, the Tier 1 sensitivity ratio approach suggested that EF was the most influential variable, when in
fact it contributes less than 5% to the variance in the HI. These results suggest that Tier 1 sensitivity
ratios are best applied to identify dominant exposure pathways, rather than dominant exposure variables
in the risk equation.
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A.2.2.3 FOcUSING ON THE RME RANGE OF THE RISK DISTRIBUTION

Monte Carlo methods can also be used to determine the sensitivity over a subset of the output
distribution, such as the RME range (i.e., 90" to 99.9" percentiles). For some exposure models, the
relative contribution of exposure variables may be different for the high-end exposed individuals than for
the entire range of exposures. The general strategy for exploring sensitivity over subsets of risk estimates
is to first sort the distribution of simulated output values in ascending (or descending) order, and then
apply a sensitivity analysis to the subset of interest (e.g., > 90" percentile). For the hypothetical example
presented in this appendix, there was no difference in the relative rankings of inputs in the RME range.

A.2.2.4 INSPECTION

With Monte Carlo analysis, the probability distributions assumed for the various input variables
are used to generate a sample of a large number of points. Statistical methods are applied to this sample
to evaluate the influence of the inputs on the model output. A number of different “indices” of
sensitivity can be derived from the simulated sample to quantify the influence of the inputs and identify
the key contributors. Most of these are based on an assumption that the model output ¥ varies in a
monotonic, linear fashion with respect to various input variables (X,, X,, etc.). For example, an estimate
of average daily intake (mg/kg-day) from multiple exposure pathways is linear with respect to the intake
from each pathway. Since most risk models are linear with respect to the input variables, the output
distribution (particularly its upper percentiles) tends to be dictated by the input variables with the largest
coefficient of variation (CV), or the ratio of the standard deviation to the mean. For example, Equation
A-9 represents a simple expression for intake rate as a function of random variables X, and X, :

¥= .:{'_r + Xz Equation A-9

where X, and X, may represent dietary intake associated with prey species 1 and 2, respectively. If the
same probability distribution was used to characterize X, and X,, such as a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 50 (i.e., CV=50/100=0.5), each variable would
contribute equally to variance in Y. If, however, X, was characterized by a lognormal distribution with
an arithmetic mean of 100 and standard deviation of 200 (i.e., CV=200/100=2.0), we would expect Y to
be more sensitive to X,. That is, X, would be a greater contributor to variance in Y.

While the coefficient of variation may be a useful screening tool to develop a sense of the
relative contributions of the different input variables, a common exception is the case when X, and X,
have different scales. For example, Equation A-10 is an extension of Equation A-9:

where a, and a, are constants that may represent the algebraic combination of point estimates for other
exposure variables. If the means of X, and X, are equal, but a, >> a,, then X, would tend to be the
dominant contributor to variance, regardless of the CV for X,. This concept was demonstrated by the
sensitivity score calculations given in Table A-8. Water ingestion rate (I w) and soil ingestion rate (I_s)
had the same CV (0.58), but | w was the dominant variable because tap water ingestion contributed
approximately 90% to the HI.
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Y=a,X; +a2;{'§ Equation A-11

The most influential random variables generally have the highest degrees of skewness or are
related to the output according to a power function (Cullen and Frey, 1999). For example, Equation A-11
presents an extension of Equation A-10 in which there is a power relationship between X, and Y. In this
example, assume Y represents the total dietary intake rate of cadmium for muskrats, X, and X, represent
the dietary intake rate associated with prey species 1 and 2, respectively, a, and a, represent additional
point estimates in the equation, and 0 is the power exponent. In general, for 0 > 1, the total dietary
intake rate (Y) will be more sensitive to the intake rate associated with species 2 (X,) than species 1.
Assume (hypothetically) that the power relationship stems from the fact that there is a direct relationship
between availability of prey species X, and chemical body burdens of prey species X, because
individuals that are more accessible to the muskrat also happen to frequent areas of the site with higher
concentrations.

A.3.0 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS

This section provides additional information on the underlying principles of sensitivity analysis,
although it is not a comprehensive summary and is not intended to substitute for the numerous statistical
texts and journal articles on sensitivity analysis. Section A.3.1 begins with a general framework for
relating model output to model input. Section A.3.2 explains the sensitivity ratio approach and highlights
some of its limitations. Section A.3.3 reviews some of the metrics reported by the commercial software
that report results of sensitivity analysis following Monte Carlo simulations (e.g., Crystal Ball®, @Risk).
While statistical software for MCA provides convenient metrics for quantifying and ranking these
sources, it is strongly recommended that risk assessors and risk managers develop an understanding of
the underlying principles associated with these metrics.

A.3.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN INPUT VARIABLE X

For purposes of discussion, let ¥ denote a model output (e.g., risk) and suppose that it depends on
the input variable X. In general, a risk assessment model may use any number of inputs; however, for
purposes of illustrating concepts, it is convenient to restrict this discussion to one variable. The model
relates the output Y to values of X (i.e., X,, X;, ***, X,) based on the function expressed as Y=F(x). The
sensitivity of ¥ to X can be interpreted as the slope of the tangent to the response surface F(X) at any
pointx,. This two-dimensional surface can be a simple straight line, or it may be very complex with
changing slopes as shown in Figure A-5a. The sensitivity, therefore, may depend on both the value of X
and the amount of the change Ax about that point. This concept can be extended to two input variables,
X, and X,, where the response is characterized by a three-dimensional surface. The shape may be a
simple plane (Figure A-5c) or it may be very complex with many “hills” and “valleys” depending on the
defining function F(X,, X,). In a typical risk assessment with ten or more variables, the surface can be
very complex, but the shape is likely to be dominated by a small subset of the input variables.

A sensitivity analysis based on a relatively small deviation about the point may be referred to as a
local sensitivity analysis, while a large deviation may be referred to as range sensitivity analysis. In
either case, the objective is to evaluate the sensitivity at some nominal point (X, * X,*) such as the point
defined by the mean or median of X, and X,. At any point, the sensitivity of the model output, Y* =
F(X,* X,*), to one of the inputs (X, or X,), is represented by the rate of change in Y per unit change in X.
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This is the slope of the surface at that nominal point in the direction of X and is expressed as 0Y/0X,, the
partial derivative of Y with respect to X.

Partial Derfvative = ﬁ o E
i

AY

If the function F(X,, X;) is known explicitly, it may be possible to determine the partial
derivatives analytically. This is not a requirement, however, because an estimate can be obtained by
incrementing X, by a small amount, AX,, while keeping the other inputs fixed and reevaluating the model
output Y. The resulting change in Y divided by AX, will approximate dY/0.X; at the nominal point. In
practice, analytical solutions can be approximated using Monte Carlo techniques. This information is
presented to highlight the fundamental concepts of sensitivity analysis. The partial derivative, per se,
would typically not be one of the methods of sensitivity analysis used in a PRA. However, all of the
approaches that are presented in this appendix are variations on this concept.

One drawback to using the partial derivative to quantify the influence of X, is that the partial
derivative is influenced by the units of measurement of X;. For example, if the measurement scale for X;
is changed from grams to milligrams, the partial derivative 0Y/0.X; will change by a factor of 1,000.
Therefore, it is necessary to normalize the partial derivative to remove the effects of units (see
Section A.3.2).

If the relationship between Y and all of the inputs is linear, then the response surface is a flat
plane and each of the partial derivatives at each point, (X,, ¥), will remain constant regardless of where
the point is in the surface (Figure A-5b). In this case, it is a simple matter to determine the relative
influence that the various inputs have on the model output. When the relationship is nonlinear, however,
the situation is more complex
because the influence of a
particular input may vary

Lower
depending on the value of that F(}{) Sensitivit
input. ¥

Higher
oenstivity

%" %1 bt

Figure A-5a. Hypothetical 2-D response surface for Y given one input
variable: Y=F(X). The sensitivity of ¥ with respect to Xis calculated as the
slope at a specific point on the surface (x°, x'), or the partial derivative,
oYX,
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Figure A-5b. Hypothetical 3-D response surface for ¥ given two input variables: Y = f(X; X,). The sensitivity
of Y with respect to X, is calculated as the slope at a specific point on the surface, or the partial derivative,
o0Y/oX,.

ar
slope = —— = consfant

Figure A-5c. Hypothetical 3-D response surface when Y is a linear function of two input variables: Y=AX,
X,). The slope (i.e., the partial derivative, 0Y/0X)) is constant for any point (X;, ¥) on the surface in the direction
of X,. In this case, 0Y/0X,=5 while 0Y/0X,=2.
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A.3.2 NORMALIZED PARTIAL DERIVATIVE

Classical sensitivity analysis methods use estimates of the partial derivatives of the model output
with respect to each variable. For the purpose of evaluating the relative influence of the various input
variables on the model output at a single point, the normalized partial derivative provides a useful
index.

If the input variables are all discrete and take on a small number of values, then it is possible to
evaluate the influence of the various input variables at each of the points defined by considering all
possible combinations of the inputs. Then the influence can be evaluated for each input by computing
normalized partial derivatives at each point. This approach is limited to situations where the number of
inputs as well as the number of possible values for each input is relatively small; otherwise, the number
of combinations to be evaluated will be unmanageable. Furthermore, when evaluating the influence at
different points on the input-output surface simultaneously, it is important to take into account the
probability associated with each of those points. For example, the fact that a particular input has a large
influence on the model output at a particular point would be discounted if the probability associated with
that particular point is very low.

A similar approach may be used to analyze inputs that are continuous variables if a few points
representing the range of values are selected. For example, low, medium (or nominal), and high values
may be selected for each of the continuous input variables and then the relative influence of each of the
input variables can be computed as in the case of discrete inputs. One limitation of this approach,
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability
for each of the points. Generally, in a PRA, many if not all of the inputs will be random variables
described by probability distributions and it will be necessary to quantify the influence of each input, X,
over the entire range of X..

An estimate of the partial derivative can be obtained by incrementing X; by a small amount, say
A X, while keeping the other inputs fixed and reevaluating the model output Y. The resulting change in ¥
divided by AX; will approximate 0Y/0X; at the nominal point.

Partial Derivative= ﬁ . ﬁ
Frid

Fiv 4

As previously noted, one complication to using the partial derivative to quantify the influence of
X, is that the partial derivative is influenced by the units of measurement of X,. One way this is
accomplished is to divide the partial derivative by the ratio of the nominal point estimates, Y* / X;* (or
equivalently multiply by X;*/ Y*). An approximation of the normalized partial derivative is given by
Equation A-12.
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AY X, T

Mormalized Partial Dertvative s — x — = ———— |Equation A-12
T [Xz - Xl]
)

This is the same as the equation for calculating sensitivity ratios (Section A.2.1.3), or elasticity
(see Equation A-5). As with the SR approach, the normalized partial derived can be weighted by
characteristics of the input variable (Section A.2.1.4). One approach is to divide by the ratio of standard
deviations (o,/ 0,), where o, is the standard deviation of Y and o, is the standard deviation of X. This
method requires that the standard deviations be known, or that a suitable estimate can be obtained.

As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence
of a particular input may vary depending on the value of that input. One approach to this problem is to
consider a range of values for the input and to examine the influence over that range. If the input is
considered to be a random variable following some specified probability distribution, then it may be
desirable to look at the influence that the random input has on the model output across the distribution of
input values. This can be accomplished with a Monte Carlo approach. Another technique that addresses
nonlinearities is to calculate contributions to variance using input variables that are transformed (e.g.,
lognormal or power transformation).

A.3.3 REGRESSION ANALYSIS: R%, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS

In order to understand R’, it is necessary to first understand simple and multiple linear regression.
In regression analysis, we are interested in obtaining an equation that relates a dependent variable () to
one or more independent variables (X):

Y=8,+H%X+e¢ Equation A-13

where 3, and [, are regression coefficients, and ¢ is called a random error. Equation A-13 is the general
equation for a simple linear regression, because there is only one Y and one X variable, and their
relationship can be described by a line with intercept [3, and slope [3,.

Note that /inear regression refers to the linear relationship between parameters (3, f3,), not X and

Y. Thus, the equation ¥ = f, + 4, X7 + & is

considered linear. Multiple linear regression EXHIBIT A-§
involves more than one X related to one Y

[}f =, +H X +0.X ] , while multivariate

SIMPLIFYING ASSUMPTIONS IN
REGRESSION ANALYSIS

regression involves more than one Y to more than o ¥isa Fnear Finciion of e mmknewmn
one X. coefficients (3,
e Successive values of Y are uncorrelated
The random error, &, represents the e  Variance of Y is constant for all values of
difference between an observed Y value (calculated inputs (X))

from the observed input variables), and a Y value
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predicted by the regression line (y). It is also called the residual (i.e., e=y—y). The random error takes
into account all unpredictable and unknown factors that are not included in the model. Exhibit A-5 gives
some of the simplifying assumptions that apply to regression analysis. Assumptions about € are that the
random error has mean = 0 and constant variance, and is uncorrelated among observations. One method
of finding the best regression line is to minimize the residual sum of squares (i.e., least-squares method),
also called the sum of squares due to error (SSE).

In terms of sensitivity analysis, we are interested in how much of the variation in Y can be
explained by the variation in X, and how much is unexplained (due to random error). If a scatter plot of
paired observations (x, ) shows that our regression line intersects all of the observations exactly, then all
of the variation in Y is explained by X. Another way of stating this is that the difference between the

mean output ( ¥ ) and an observed y (,), or (¥, - ¥ ), is equal to the difference between the mean output

and a predictedy or ( 77— F ).

In general, the total deviation of y, from ¥ is equal to the sum of the deviation due to the
regression line plus the deviation due to random error:

@z'_.:'_}): @z'_.j;z'j-l_(.}?i _f)
Ty - =T - F)Y + 2 (F, - F)®  Equation A-14
sl = SuE + S5R

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum
of squares due to regression (SSR).

A.3.3.1 CALCULATIONS OF R? AND ADJUSTED R?

The R’ term is a measure of how well the regression line explains the variation in ¥, or:

SRR 2E
jria o

©SST  SST
o _ _ Equation A-15
_|variation explained by regression
total variation in ¥

where R’ is called the coefficient of multiple determination and R is called the multiple correlation
coefficient. 1f R*=0.90 for a certain linear model, we could conclude that the input variables (X,
X,,...X,) explain 90% of the variation in the output variable (Y). R’ reduces to the coefficient of
determination r° for simple linear regression when one independent variable (X) is in the regression
model. The sample correlation coefficient, r, is a measure of the association between X and Y, and
calculated by Equation A-16. It is also referred to as the Pearson product moment correlation coefficient.
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S (X, - IXT, - 7

F= =1 — Equation A-16

S (X - XPY (5 - )
=l i=l

In addition, » is an estimate of the unknown population parameter, p, defined by Equation A-17:

F
2yr = e Equation A-17

FyTFy

where o, and o, denote the population standard deviations of the random variables X and Y, and where
Oyy is called the covariance between X and Y. The covariance o0, is a population parameter describing
the average amount that two variables “covary”. Thus, another way of thinking about a correlation
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product
of their respective standard deviations; and the value always lies between -1 and +1. @Risk and Crystal
Ball® provide both the R’ for the entire model, as well as the correlation coefficients for each input
variable (or regressor). The higher the value of R, for X, the more sensitive the output variable is to that
input variable.

Although the calculations are the same, there is a subtle conceptual difference between the
coefficient of determination (+) from regression, and the square of the correlation coefficient. When
evaluating two variables (X, Y), the key is whether X is interpreted as a “fixed” quantity (i.e., an
explanatory variable), or a random variable just like Y. In regression analysis, 7 measures how well the
regression line explains the variation in Y given a particular value for X (Equation A-15). Correlation
requires that X be considered a random variable, typically having a bivariate normal distribution with ¥
(see Appendix B).

One artifact of regression analysis is that R’ increases as you add more and more input variables
to your model; however, the increased fit of the model due to one or more of the input variables may be
insignificant. Sometimes an adjusted R’ is calculated to take into account the number of input variables
(called regressors) in the model (k) as well as the number of observations in the data set (n):

- DR -1
Ri{;‘ = % Equation A-18
n-k-1

While R’ gives the proportion of the total variation of Y that is explained, 2% (Equation A-18) takes

into account the degrees of freedom (df), and gives the proportion of the total variance of Y that is
explained (variance = variation /df); or stated simply, & isthe R’ corrected for df, where df is

described by [1 - k/(n-1)].

e If the relationship between an input variable and an output variable is strong, but nonlinear, the R’
statistic will be misleadingly low.
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e [f the means of the sampling data are used rather than the individual observations for each variable,
R’ will be misleadingly high. This is because taking the mean of a sample reduces the fraction of
the total variation due to random variation (see discussion of random error above). This is an
important consideration when trying to interpret the results of regression analyses that incorporate
data averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken
at the city block level may give an inflated R’ value if the sampling data are averaged over a larger
spatial scale, such as the census tract level).

A multiple regression analysis can also be performed to estimate the regression coefficients (see
Appendix A.3.3). Each coefficient essentially represents an “average” value of the partial derivative
across the entire distribution of the input. The regression coefficient, like the partial derivative, depends
on the units of measurement so, as in the case of the partial derivative, it must be normalized. This can
be accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations
s,/s,.

A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis.
Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this;
however, in general, they can be classified into two general categories: forward selection and backward
elimination. In the forward selection, the inputs are added to the model one by one in the order of their
contribution. In the backward elimination, all of the inputs are used in the model initially and then they
are dropped one by one, eliminating the least important input at each step. A true stepwise procedure is a
variation on the forward selection approach where an input can drop out again once it has been selected
into the model if at some point other inputs enter the model that account for the same information.

A.3.3.2 RELATIVE PARTIAL SuM OF SQUARES (RPSS)

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to
each of the input variables by partitioning the variance in the output attributable to each variable using
multiple regression techniques (Rose et al., 1991). The RPSS is presented as a percentage reflecting the
proportion of influence a given variable has on risk. The results of RPSS are intuitive and generally easy
to understand.

Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the
variables. To calculate RPSS for variable V,, the difference between the regression sum of squares (RSS)
for the full model and the regression sum of squares for the model with ¥, missing (RSS ) is divided by
the total sum of squares (TSS) and expressed as a percentage:

100 (RSS — RSS )

RPSS, =
TSS

Equation A-19

This procedure can be thought of as analogous to least squares linear regression, but performed
in the n-dimensional parameter space of the risk equation. Since this approach depends on the adequacy
of the linear regression model between the output variable (e.g., risk) and all the variables, an additional
diagnostic is to check how close R’ is to 1.0. For equations with more than three parameters (such as
those used in Superfund risk assessments), the computational overhead of this process is large and
requires specific computer programs. The software program Crystal Ball® does not perform this
calculation, but it can be determined with most standard statistical software packages that perform
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multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression
that yields correlation coefficients in lieu of percent contributions to output variance.

A.3.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)

The validity of using indices such as regression coefficients, correlation coefficients, and partial
correlation coefficients depends on the assumptions of the underlying linear model being met. If there is
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based
on the rank orders of the inputs and associated outputs can be used. The Spearman Rank correlation
coefficient is a nonparametric statistic; it measures an association between variables that are either count
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale. An
example of an ordinal scale would be the ranking of sites based on their relative mean soil
concentrations. For example, if there are four categories of soil contaminant concentrations, sites with
the highest concentrations may receive a rank of 1 while sites with lowest concentrations may receive a
rank of 4. Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference
exists between successive positions on a scale.

To calculate the Spearman rank correlation coefficient, assign a rank to each of the input
variables (X)) and output variables (Y,). For each ranked pair (X, Y,), calculate the difference, d, between
the ranks. For example, if the first observation for variable X has a ranking of 5 (relative to all of the
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations
of Y), the difference (d) is equal to 5-3=2. Spearman rho (r,) is calculated as:

"
6% d}
_ i=l .
R Equation A-20
(™ - n)

Hence (-1 < 7, < 1.0), and »=-1 describes a perfect indirect or negative relationship between
ranks in the sense that if an X element increases, the corresponding Y element decreases. Similarly, » =0
suggests that there is no relationship between X and Y.

The Pearson product moment correlation coefficient is equal to the Spearman rank correlation
coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their
respective ranks.
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APPENDIX B

SELECTION AND FITTING OF DISTRIBUTIONS
B.0 INTRODUCTION

An important step in Monte Carlo analysis (MCA) is to select the most appropriate distributions
to represent the factors that have a strong influence on the risk estimates. This step in the development of
a Monte Carlo model can be very challenging and resource intensive.

rz Specifying probability distributions for all of the input variables and
parameters in a probabilistic risk assessment (PRA) will generally not
be necessary.

If the sensitivity analysis indicates that a particular input variable does not contribute
significantly to the overall variability and uncertainty, then this variable may be represented as a point
estimate. As discussed in Appendix A, however, different approaches to sensitivity analysis may be
applied throughout the tiered approach (e.g., sensitivity ratios, correlation analysis), and the ability to
reliably identify variables as being minor or major can vary. Sometimes it can be helpful to develop
probability distributions based on preliminary information that is available from Tier 1 in order to
explore alternative options for characterizing variability and uncertainty. Likewise, sometimes the
important “risk drivers” are apparent, and resources can be allocated to fully characterize the variability
and uncertainty in those input variables. Therefore, the process of selecting and fitting distributions may
also be viewed as a tiered approach. This appendix reviews the methods available to select and fit
distributions and provides guidance on the process for determining appropriate choices depending on the
information needed from the assessment and the information available to define the input variables.

In PRA, there are some important distinctions in the terminology used to describe probability
distributions. A probability density function (PDF), sometimes referred to as a probability model,
characterizes the probability of each value occurring from a range of possible values. Probability
distributions may be used to characterize variability (PDFv) or uncertainty (PDFu). One advantage of
using a PDFv and PDFu is that distributions represent a large set of data values in a compact way (Law
and Kelton, 1991). For example, a lognormal distribution provides a good fit to a large data set of tap
water ingestion rates (n=5,600) among children ages 1 to 11 years (Roseberry and Burmaster, 1992).
Therefore, the distribution type (lognormal) and associated parameters (mean and standard deviation)
fully describes the PDFv for intake rates, from which other statistics of interest can be calculated (e.g.,
median, and 95™ percentile). Reducing a complex exposure model to a series of representative and well-
fitting distributions can facilitate both the quantitative analysis and the communication of the modeling
methodology. Alternatively, a PDFu may be specified to characterize parameter uncertainty. For
example, the sample mean ( X ) is generally an uncertain estimate of the population mean (u) due to
measurement error, small sample sizes, and other issues regarding representativeness (see Section B.3.1).
A PDFu can be used to represent the distribution of possible values for the true, but unknown parameter.
Understanding whether uncertainty or variability is being represented by a PDF is critical to determining
how the distribution and parameters should be specified and used in a PRA.
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ExHiBIT B-1
DEFINITIONS FOR APPENDIX B

Bayesian Analysis - Statistical analysis that describes the probability of an event as the degree of belief or confidence
that a person has, given some state of knowledge, that the event will occur. Bayesian Monte Carlo combines a
prior probability distribution and a likelihood function to yield a posterior distribution (see Appendix D for
examples). Also called subjective view of probability, in contrast to the frequentist view of probability.

Bin - Regarding a histogram or frequency distribution, an interval within the range of a random variable for which a
count (or percentage) of the observations is made. The number of bins for a histogram is determined on a case-
by-case basis. In general, equal interval widths are used for each bin; however, in some cases (e.g., Chi-square
test), individual bin widths are calculated so as to divide the distribution into intervals of equal probability.

Countably Infinite - Used to describe some discrete random variables, this term refers to a set of numbers that can be
counted with integers (e.g., one, two, three) and that has no upper limit. Examples include the number of tosses
required for a coin to show a head—we can count each toss, but it is possible that at least one more toss is
needed. The number of dust particles in a volume of air is another example. Countably finite implies there is an
upper limit (e.g., days of work per year).

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF, gives the cumulative probability of
occurrence for a random independent variable. Each value c of the function is the probability that a random
observation x will be less than or equal to c.

Empirical Distribution Function (EDF) -The EDF, also called the empirical CDF (ECDF), is based on the frequency
distribution of observed values for a random variable. It is a stepwise distribution function calculated directly
from the sample, in which each data point is assigned an equal probability.

Frequency Distribution or Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population. It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

Goodness-of-Fit (GoF) Test - A method for examining how well (or poorly) a sample of data can be described by a
hypothesized probability distribution for the population. Generally involves an hypothesis test in which the null
hypothesis H, is that a random variable X follows a specific probability distribution F,. That is, H,: F=F; and
H,: F #F,.

Independence - Two events A and B are independent if whether or not A occurs does not change the probability that B
occurs. Likewise, knowing the value of B does not affect the value of A. Input variables, X and Y, are
independent if the probability of any paired values (X, Y) is equal to the probability of X multiplied by the
probability of Y. In mathematical terms, X and Y are independent if f(X, Y)=f(X) x f(Y). Independence is not
synonymous with correlation. If X and Y are independent, then their correlation is zero, Cor(X, Y)=0. But, the
converse is not always true. There may be a nonlinear relationship between X and Y that yields Cor(X, Y)=0, but
the variables are highly dependent.

Nonparametric Method - Also called a distribution-free method, a procedure for making statistical inferences without
assuming that the population distribution fits a theoretical distribution such as normal or lognormal. Common
examples are the Spearman rank correlation, (see Appendix A) and the bootstrap-t approach..

Parameter - In PRA, a parameter is a quantity that characterizes the probability distribution of a random variable. For
example, a normal probability distribution may be defined by two parameters (e.g., arithmetic mean and standard
deviation).

Parametric Distribution - A theoretical distribution specified by a distribution type and one or more parameters.

Examples include the normal, Poisson, and beta distributions.
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ExH1BIT B-1 —Continued
DEFINITIONS FOR APPENDIX B

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random
variable. The density at a point refers to the probability that the variable will have a value in a narrow range
about that point.

Probability Distribution - The mathematical description of a function that associates probabilities with specified
intervals or values for a random variable. A probability distribution can be displayed in a graph (e.g., PDF
or CDF), summarized in a table that gives the distribution name and parameters, or expressed as a
mathematical equation. In PRA, the process of selecting or fitting a distribution that characterizes variability
or uncertainty can also be referred to as applying a probability model to characterize variability or
uncertainty. In this guidance, the probability model is considered to be one source of model uncertainty.

Step Function - A mathematical function that remains constant within an interval, but may change in value from one
interval to the next. Cumulative distribution functions for discrete random variables are step functions.

Z-score - The value of a normally distributed random variable that has been standardized to have a mean of zero and a
SD of one by the transformation Z=(X-u)/c. Statistical tables typically give the area to the left of the
z-score value. For example, the area to the left of z=1.645 is 0.95. Z-scores indicate the direction (+/-) and
number of standard deviations away from the mean that a particular datum lies assuming X is normally
distributed. Microsoft Excel’s NORMSDIST(z) function gives the probability p such that p=Pr(Z < z), while
the NORMSINV/(p) function gives the z-score z, associated with probability p such that p=Pr(Z < z,).

B.1.0 CONCEPTUAL APPROACH FOR INCORPORATING A PROBABILITY DISTRIBUTION IN A PRA

Often, more than one probability
distribution may appear to be suitable for

EXHIBIT B-2
characterizing a random variable. A step-wise,
tiered approach is recommended for GENERAL STRATEGY FOR SELECTING
incorporating probability distributions in a AND FITTING DISTRIBUTIONS
PRA. This appendix provides guidance on
selecting and fitting distributions for (1) Hypothesize a family of distributions
variability and parameter uncertainty based on 8 éstsiizztgu;g%t?ljt];gno:):rljr::gg:lson
the overall strategy given in Exhibit B-2. 4) e e e

Many of the same principles of selecting and
fitting distributions are also given in EPA's
Report of the Workshop on Selecting Input
Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

Probability distributions may be developed to characterize variability or uncertainty. Example
flow charts for specifying a PDFv and PDFu are given in Figures B-1 and B-2, respectively. Both
approaches outline an iterative process that involves three general activities: (1) identify potentially
important sources of variability or uncertainty to determine if a PDF may be needed; (2) apply the
general strategy given in Exhibit B-1 and evaluate plausible alternatives for distributions and parameter
estimates; and (3) document the decision process. The flowcharts provide a general outline of the
process and contain terms which are explained in subsequent sections. Just as with the point estimate
approach, different sites may require different probability distributions for input variables, depending on
the unique risk management issues and sources of uncertainty.
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B.2.0 PRELIMINARY SENSITIVITY ANALYSIS

Selecting and fitting probability distributions for all of the input variables can be resource
intensive and is generally unnecessary. ldeally, a subset of variables could be identified that contribute
to most of the variability and uncertainty in a risk estimate. Sensitivity analysis can play an important
role in helping to identify and quantitatively rank the major exposure pathways and variables. Since the
information obtained from a sensitivity analysis may vary, depending on the approach(es) used and the
information available to characterize the input variables, risk assessors should understand inherent
limitations of each approach. A variety of approaches that are common for Tier 1 and 2 analyses are
described and applied to a hypothetical example in Appendix A.

In a Tier 1 assessment, sensitivity analysis is typically limited to exploring the effect of
alternative point estimates on the risk estimate. These methods can be helpful if additional information
regarding the variability in the input variables is incorporated into the analysis (i.e., sensitivity scores).
Alternatively, a reasonable approach is to specify preliminary probability distributions for one or more
inputs in order to maximize the advantages of probabilistic methods. The difference between a
preliminary distribution and a subsequent distribution reflects the level of effort invested in
characterizing variability and uncertainty. If a robust data set is available in Tier 1 to define point
estimates, then a preliminary distribution may, in fact, fully characterize variability with very high
confidence. For other variables, summary statistics, rather than sample data, may be available, allowing
for estimates of central tendency or plausible ranges. The use of preliminary distributions reflects an
effort to employ more robust sensitivity analysis techniques without expending the effort and resources
that might otherwise be applied to a PRA in Tier 2. The goal of the preliminary analysis would not be
necessarily to evaluate risks and/or develop a PRG; rather, the focus would be on identifying input
variables that may be important to explore more fully. Preliminary sensitivity analysis can provide
insight into the importance of selecting among alternative probability distributions and exposure
scenarios.

One-dimensional Monte Carlo simulations with preliminary (or screening-level) distributions can
be run prior to engaging in a more involved process of selecting and fitting distributions. The
distributions can be selected based on knowledge regarding the mechanisms that result in variability, and
information already available for determining point estimates (e.g., summary statistics, U.S. EPA
guidance, etc.). Table B-1 provides examples of preliminary distributions that might be selected based
on the type of information available, sometimes referred to as the state of knowledge. In many cases, the
distribution is intended to estimate the plausible bounds of a variable, while requiring no additional data
collection effort. For example, given estimates of a lower bound [min], upper bound [max], and the
assumption that each value is equally likely, a uniform distribution would be used to represent variability
(or parameter uncertainty). If no mechanistic basis for selecting a distribution exists, then the
preliminary distribution would be chosen based on the available information. For example, given the
estimates of the arithmetic mean [p] and a percentile value [a] for a random variable, an exponential
distribution might be recommended with A=1/p.

Guidance on matching the choice of the distribution to the state of knowledge is extended to a
more diverse array of scenarios later in this appendix (see Table B-4).
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Table B-1. Examples of Preliminary Distributions Based on Information Available?, ?

Information / Constraints Distribution Shape

[a, b] uniform

[a, m, b] triangular

[a b, a;,a, B] beta

[w, o] normal

Yy exponential

[a, b, p, o] Johnson Sb,
Lognormal

[a, B gamma

a=minimum, b=maximum, m=mode, a=shape parameter, p=mean,
o=standard deviation, y=average rate of occurrence of events, 3=scale,

It may be informative to explore alternative choices for distributions applied to the same
variable. For example, a simple yet informative approach is to run two 1-D MCA simulations for
variability with an input variable characterized first by a Johnson Sb (i.e., a four-parameter lognormal
distribution; Hahn and Shapiro, 1967) and then by a normal distribution. The difference in the risk
distribution, especially at the percentile that is relevant to the risk management decision (e.g.,
95™ percentile), may offer insights regarding the importance of the shape of the PDFv.

B.3.0 WHAT DOES THE DISTRIBUTION REPRESENT?

Distributions may be specified to characterize variability or uncertainty. Often, a Monte Carlo
simulation of variability will focus on describing differences between individuals in a population (i.e.,
inter-individual variability). In this case, the goal is to select a distribution that is representative of the
target population—the set of all receptors that are potentially at risk. There may be uncertainty that the
choice of PDFv reflects variability in the target population. In general, risk assessors should fully
disclose uncertainties in the PDFv, especially because the use of a distribution instead of a point estimate
may inappropriately suggest that there is a greater state of knowledge. Following the tiered process (see
Chapter 2, Figure 2-1), there are multiple opportunities to consider consequences of alternative modeling
approaches early in the process of developing a probabilistic model. The importance of relating the
distribution to the target population, clearly distinguishing between variability and uncertainty, and
evaluating data representativeness is emphasized in Sections B.3.1, B.3.2 and B.4.

The preliminary distributions are based in part on maximum entropy concepts. Maximum entropy is a technique for
determining the distribution that represents the maximum uncertainty allowed by the available information and data (\Vose,
1996). Although the approach can be used to quickly define distributions that maximize uncertainty, the credibility of the
distribution depends on the use of accurate, unbiased information.

23ee Table B-2 for more detailed descriptions of selected distributions.
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B.3.1 CONCEPTS OF POPULATION AND SAMPLING

The distinction between a target population, a sampled population, and a statistical population
should be considered carefully when evaluating information for use in both Tier 1 and Tier 2 of a PRA.
The target population is often considered to be the “population of concern”. A risk assessor is often
interested in quantifying specific attributes of the population (e.g., exposure duration, exposure
frequency, etc.). A sampled population is the set of receptors available for selection and measurement.
For purposes of this appendix/guidance, the sampled population may be the target population or it may
be a different population that is thought to be representative of the target population. For purposes of
this guidance, a statistical population is an approximation of the target population based on information
obtained from the sampled population.

Distributions are generated from representative sample populations to make inferences about the
target population. Ideally, a sampled population should be a subset of a target population and should be
selected for measurement to provide accurate and representative information about the exposure factor
being studied. However, defining representative samples is a matter of interpretation.
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Sensitivity Analysis
(i.e., Tier 1 and Tier 2)

Use a health protective
point estimate

Is the factor
influential?

Present in workplan
and report

Do sufficient data
exist or can they be
collected to run a
refined 1-D MCA?

Is the factor No
amenable to expert

judgment?

Y

Conduct expert
elicitation for PDF

Can the data be
adjusted to better
represent the target
population (e.g.,
weighting factors

Avre the data
representative of
of the target

population?

\

Present PDF/EDF in
workplan and report

=

A\

Consider the mechanistic

characteri:_;tics of the _data »  Continued on next >
(e.g., continuous or discrete page

variable)

Yes

A 4

Figure B-1 (page 1 of 2). Conceptual approach for incorporating probability distributions
for variability in PRA.
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(Continued from previous page)

Summary statistics and graphical data
exploration (e.g., histograms)

No

Choose a type of PDF
(Normal, Weibull, etc.)

'

Estimate
parameters

Appropriate
Goodness-of-Fit?

Apply truncation limits
as appropriate

Would a
mixture of
distributions

No

Yes

Estimate percentile
values of EDF

v

Estimate tails and
truncation limits

v

better represent
the data?

Specify a mixture of

Present PDF/EDF in
work plan and report

distributions

Figure B-1 (page 2 of 2). Conceptual approach for incorporating probability distributions

for variability in PRA.
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Identify dominant
exposure pathway(s) from
sensitivity analysis
(Appendix A, Section B.2.0)

Identify factor(s)that may
contribute to uncertainty in
the risk distribution
(Appendix A, Section B.2.0)

Present
results in graphical
and tabular format

No

Select a plausible risk
exposure model for the
exposure pathway

(Fig. B-2b)

l

Select probability
distribution(s) for variability
in exposure factor(s) (Fig. B-1)

Quantify parameter
uncertainty with point
estimates or distribution(s)
(Fig. B-2c)
|

l

Run simulation to
propagate variability and
uncertainty (e.g., multiple

1-D MCAs; 2-D MCA,
MEE, etc.)

Continue

quantifying
uncertainty?

Figure B-2a (page 1 of 3). Conceptual approach for quantifying model and parameter

uncertainty in PRA.

Yes
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Identify dominant
exposure pathway(s) Is more than
from one model No
Sensitivity Analysis plausible for an
(Appendix A and Section exposure pathway?
B.2.0)

Identify and evaluate the exposure
P factor(s) quantified by a
candidate exposure model

A

Purpose and Objectives
* regulatory context
« scientific questions addressed
« application niche (physical,
chemical, biological system)
« status of agency and/or peer review

\ 4

Defining and Limiting Components
« process(es) characterized
(e.g., transport, diffusion,
volatilization, bioavailability, etc.)
« temporal and spatial scales
« level of aggregation/simplification

A

Theoretical Basis
 mechanistic basis for algorithms
 numerical or analytic solution

A 4

Run simulation
with candidate
exposure model

Is the
exposure model
appropriate?

Select alternative
exposure model

Figure B-2b (page 2 of 3). Detailed conceptual approach for incorporating model uncertainty in PRA.
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Identify candidate probability
distribution(s) for variability (Fig. B-1):
» mechanistic basis for variability
« exploratory data analysis

« expert judgment

A

A

Estimate parameters
(e.g., MLE, method of
moments, etc.)

Is information Continue with

Is the parameter

available to quantify amenable to expert ’ proclezs _
parameter elicitation? a:;in?i(:;’voi d%ltr;g

uncertainty?

Select distribution
--p| (or point estimate) for |«
uncertainty

v

Run simulation to
propagate variability |«
and uncertainty

v

Run sensitivity
analysis to identify
important sources of
uncertainty

Conduct expert
elicitation

Should an alternative
probability model
(i.e., PDFv or PDFu)
be explored?

Present results in
graphical and
tabular format

Yes

Figure B-2c (page 3 of 3). Detailed conceptual approach for incorporating parameter
uncertainty in PRA.
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B.3.2 CONSIDERING VARIABILITY AND UNCERTAINTY IN SELECTING AND FITTING DISTRIBUTIONS

Multiple probability distributions may be used to describe variability and uncertainty in an input
variable. For example, a normal probability distribution may be selected to characterize variability in
body weight, whereas a uniform distribution may selected to characterize uncertainty in the estimate of
the arithmetic mean of the normal distribution. The appropriate interpretation and analysis of data for an
exposure variable will depend on whether one is specifying a PDFv or PDFu. Figure B-1 outlines one
useful process for selecting distributions for variability, whereas Figure B-2 (three pages) outlines a
useful process for quantifying both model and parameter uncertainty.

Variability generally refers to observed differences attributable to true heterogeneity or diversity
in a population (U.S. EPA, 1997b). Variability results from natural random processes. Inter-individual
variability may stem from environmental, lifestyle, and genetic differences. Examples include human
physiological variation (e.g., natural variation in body weight, height, breathing rates, drinking water
intake rates), changes in weather, variation in soil types, and differences in contaminant concentrations in
the environment. Intra-individual variability may reflect age-specific changes (e.g., body weight and
height). Variability is not reducible by further measurement or study. A PDF for variability can usually
be obtained by fitting a distribution to the sample measurements.

Sources of Uncertainty

Uncertainty generally refers to the lack of knowledge about specific factors, parameters, or
models (U.S. EPA, 1997b). Although uncertainty in exposure and risk assessment may be unavoidable
due to the necessary simplification of real-world processes, it generally can be reduced by further
measurement and study. Parameter uncertainty may stem in part from measurement errors, sampling
errors, or other systematic errors in the collection and aggregation of data. Model uncertainty may reflect
the simplification of a complex process, a mis-specification of the exposure model structure, a misuse or
misapplication of an exposure model, use of the wrong distributional model, and the use of surrogate data
or variables. Scenario uncertainty may reflect uncertainty in an exposure model, such as the relevance of
specific exposure pathways to the target population. A conceptual exposure model can be used to
provide direction in specifying a probability distribution for uncertainty. For example, the concentration
term in a Superfund risk assessment typically represents the long-term average concentration to which a
receptor is exposed (see Chapter 5). An uncertainty distribution for the concentration term could be
developed in part from ideas about the statistical uncertainty of estimating the long-term average from a
small sample, and the assumption of random movement of the receptors within a defined exposure unit.

Probability Distributions and Model Uncertainty

This appendix primarily focuses on methods for quantifying uncertainty associated with both the
selection of a variability distribution, and estimating parameters of a distribution. A probability
distribution can be referred to as a type of model in the sense that it is an approximation, and often a
simplified representation of variability or uncertainty that combines both data and judgment. A broader
use of the term model refers to a representation of a chemical, physical, or biological process. In risk
assessment, many different models have been developed, with varying objectives, major defining and
limiting components, and theoretical basis. Figure B-2b provides a general process for exploring model
uncertainty of this type. This figure reflects the concepts and spirit of the Agency Guidance for
Conducting External Peer Review of Environmental Regulatory Modeling (U.S. EPA, 1994). In general,
EPA regional risk assessors should be consulted in order to determine the types of exposure and risk
models that may be plausible for quantifying exposure at a particular site.
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Parameter Uncertainty

Quantifying parameter uncertainty in a probabilistic model typically requires judgment (see
Appendix C). When data are uncertain due to, for example, small sample sizes or questionable
representativeness (Section B.3.1), Monte Carlo simulation can be a useful tool for demonstrating the
effect of the uncertainty on the risk estimates. It is most important to model uncertainty when the
sensitive input variables are uncertain. Uncertainty can be quantified in both the point estimate approach
(e.g., a range of possible central tendency exposure values) or a probabilistic approach (e.g., a range of
possible values for the arithmetic mean of a distribution). While a quantitative uncertainty analysis may
complicate a risk management decision by suggesting that risk estimates are highly uncertain, this
information can be helpful by focusing additional efforts towards collecting data and reducing
uncertainty in the most sensitive input variables. Likewise, if an estimated risk is below a regulatory
level of concern, even after quantifying highly uncertain inputs to the exposure model, the risk manager
may be more confident in a decision. As emphasized in Figures B-2a, B-2b, and B-2c, risk assessors
should generally refrain from setting ad hoc probabilities to different candidate distributions in a single
Monte Carlo simulation. Instead, this guidance strongly recommends exploring model or parameter
uncertainty by running a separate simulation with each candidate model. For example, rather than
randomly assigning a beta distribution or a lognormal distribution to an exposure variable for each
iteration of a simulation, separate simulations should be run with the candidate probability distributions.
Similarly, if a range of temporal or spatial scales is plausible for quantifying exposure, multiple
simulations should be designed to demonstrate the importance of these assumptions on the risk estimates.

Uncertainty in parameter estimates may be characterized using a variety of methods. Similar to a
PDF for variability, a PDF for parameter uncertainty may be represented by a probability distribution
with a unique set of parameters. Sometimes the distribution for uncertainty can be specified by knowing
(or assuming) a distribution for variability. For example, if X is a normally distributed random variable,
the Student’s t distribution and the Chi-square (?) distribution can be used to develop PDFu’s for
random measurement error uncertainty in the sample mean and variance, respectively. The PDFu for
both the Student’s t and Chi-square distributions is determined by the sample size (n). If a PDFu cannot
be determined from the PDF for variability, or assumptions regarding the underlying distribution for
variability are not supportable, nonparametric or “distribution free” techniques may be used (e.g.,
bootstrapping). Both parametric and nonparametric techniques may yield confidence intervals for
estimates of population parameters.

B.4.0 Do DATAEXIST TO SELECT DISTRIBUTIONS?

Developing site-specific PDFs for every exposure assumption (or toxicity value, in the case of
ecological risk) can be time and resource intensive, and in many cases, may not add value to the risk
management decision. For those exposure variables that do exert a significant influence on risk, a PDF
may be developed from site-specific data, data sets available in the open literature (e.g., EPA’s Exposure
Factors Handbook, U.S. EPA 1997a), or from existing PDFs in the literature (e.g., Oregon DEQ, 1998).

At Superfund sites, perhaps the most common exposure variable that will be described by site-
specific data will be the media concentration term. The sample (i.e., collection of empirical
measurements) will most often be used to estimate either a point estimate of uncertainty (e.g., an upper
confidence limit for the arithmetic mean concentration—the 95% UCL), or a distribution that
characterizes the full distribution of uncertainty in the mean. Exposure variables such as ingestion rates,
exposure duration, and exposure frequency will most likely be derived from existing PDFs or data sets in
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the open literature. The Agency supports the development PDFs that may be generally applicable to
different sites (e.g., body weight, water intake, and exposure duration) (U.S. EPA, 1999b, 2001). Until
final recommendations of PDFs are available for the more generic exposure variables, PDFs for exposure
variables that lack adequate site-specific data will typically be selected from: (1) existing PDFs; (2) data
on the entire U.S. population; or (3) data on subsets of the U.S. population that most closely represent the
target population at a site. If risks to a sensitive subpopulation, such as young children, elderly adults,
ethnic groups, or subsistence fishermen, are a concern at a site, then existing PDFs or data sets that best
characterize these subpopulations would be preferable to national distributions based on the entire U.S.
population. If adequate site-specific data are available to characterize any of the exposure variables,
distributions can be fit to those data.

Uncertainty Associated with Sample Size

An appropriate question to consider when evaluating data sets for use in exposure and risk
assessment is, “What sample size is sufficient?” Generally, the larger the sample size (n), the greater
one’s confidence in the choice of a probability distribution and the corresponding parameter estimates.
Conversely, for small n, Goodness-of-fit (GoF) tests (see Section B.6.2) will often fail to reject many of
the hypothesized PDFs. In general, there is no rule of thumb for the minimum sample size needed to
specify a distribution for variability or uncertainty. Increasing a sample size may be an appropriate
option to consider when evaluating risk management strategies to reduce uncertainty.

Statistical sampling, in general, is important to consider when estimating parameters of a
probability distribution. One rule of thumb is that the parameters that reflect the central tendency of a
distribution (e.g., arithmetic mean, median, mode) can be estimated with greater confidence than
parameters that reflect the extremes of the distribution (e.g., 95" percentile). When deciding on
appropriate truncation limits (minimum and maximum values), it is unlikely that the statistical sample
actually includes the plausible bounds. See Section B.5.7 for more detailed guidance on specifying
truncation limits for probability distributions.

B.4.1 WHAT ARE REPRESENTATIVE DATA?

The question, “What is a representative sample?”, is important to address when selecting and
fitting distributions to data. Many of the factors that may determine representativeness (e.g., sample size
and the method of selecting the target, and sample population (Section B.3.1)) are relevant to both point
estimate and PRA. EPA’s Guidance for Data Usability in Risk Assessment, Part A (U.S. EPA, 1992)
describes representativeness for risk assessment as the extent to which data define the true risk to human
health and the environment.

The goal of representativeness is easy to understand. However, evaluating data to determine if
they are representative is more difficult, especially if the problem and decision objectives have not been
clearly defined.

The importance of representativeness also varies with the level of complexity of the assessment.
If a screening level assessment is desired, for example, to determine if concentrations exceed a health
protective exposure level, then representativeness may not be as important as health protectiveness.
However, if a complete baseline risk assessment is planned, the risk assessor should generally consider
the value added by more complex analyses (e.g., site-specific data collection, sensitivity analysis, and
exposure modeling). A tiered approach for making these decisions for a PRA is presented in Chapter 2,
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and examples of more complex analyses are presented in Appendix D. In addition, the Agency (U.S.
EPA, 1999a) summarizes the advantages and weaknesses of proposed checklists for risk assessors to
evaluate representativeness of exposure factors data.

For purposes of this guidance, a surrogate study is one conducted on a sampled population that is
similar to, but not a subset of, the target population. When using surrogate data, the risk assessor should
generally exercise judgment about the representativeness of the data to the target population. For
example, the distribution of body weights of deer mice from two independent samples from similar
ecosystems may differ depending on the age structure, proportion of males and females, and the time of
year that the samples were obtained. When in doubt about which study results to use in defining a
probability distribution, one option is to develop a distribution and calculate risks with each sample
independently, and compare the results. This approach can be a simple, but effective type of uncertainty
analysis. At a minimum, uncertainties associated with the use of surrogate studies should be discussed in
the assessment.

In many cases, the surrogate population shares common attributes with the target population, but
is not truly representative. The risk assessor should then determine the importance of the discrepancies
and whether adjustments can be made to reduce those differences. There are a wide variety of methods
that can be used to account for such discrepancies, depending on the available information. Summary
statistics (e.g., as presented by the Exposure Factors Handbook, U.S. EPA, 1997a) can be used to
estimate linear characteristics of the target population from the sample population. For example, if the
mean, standard deviation, and various percentiles of the sample population are known, then the mean or
proportion exceeding a fixed threshold can be calculated using a simple weighted average. Adjustment
options are more numerous if the risk assessor has access to the raw data. Adjustments for raw data
include: weighted averages, weighted proportions, transformations, and grouping of the data based on the
available information (e.g., empirical data, and professional judgment).

In most cases, the evaluation of data representativeness will necessarily involve judgment. The
workplan should generally include a description of the data, the basis for the selection of each
distribution, and the method used to estimate parameters (see Chapter 2). Empirical data (i.e.,
observations) are typically used to select distributions and derive parameter estimates. However, it may
be necessary to use expert judgment or elicitation in cases where the quality or quantity of available data
are found to be inadequate.

B.4.2 THE ROLE OF EXPERT JUDGMENT

Expert judgment refers to inferential opinion of a specialist or group of specialists within an area
of their expertise. When there is uncertainty associated with an input variable, such as a data gap, expert
judgment may be appropriate for obtaining distributions. Note that distributions elicited from experts
reflect individual or group inferences, rather than empirical evidence. Distributions based on expert
judgment can serve as Bayesian priors in a decision-analytic framework. The distributions and Bayesian
priors can be modified as new empirical data become available. There is a rich literature base regarding
the protocol for conducting expert elicitations and using the results to support decisions (Morgan and
Henrion, 1990). Elicitation of expert judgment has been used to obtain distributions for risk assessments
(Morgan and Henrion, 1990; Hora, 1992; U.S. EPA, 1997b) and for developing air quality standards
(U.S. EPA, 1982).
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Bayesian analysis is a statistical approach that allows the current state of knowledge, expressed

as a probability distribution, to be formally
combined with new data to reach an updated
information state. In PRA, Bayesian Monte
Carlo analysis (Bayesian MCA) can be used to
determine the reduction in uncertainty arising
from new information. When combined with
techniques from decision analysis, Bayesian
MCA can help to determine the type and quantity
of data that generally should be collected to
reduce uncertainty. The benefits and limitations
of expert elicitation, Bayesian statistics, Bayesian
MCA, and decision analysis (i.e., value of
information [VOI]), as applied to PRA, are
discussed in greater detail in Appendix D.

B.5.0 FITTING DISTRIBUTIONS TO DATA

Sometimes more than one probability
distribution may adequately characterize
variability or uncertainty. The choice of a
distribution should be based on the available data
and on knowledge of the mechanisms or
processes that result in variability. In general, the
preferred choice is the simplest probability model

EXHIBIT B-3

FACTORS TO CONSIDER IN SELECTING A
PROBABILITY DISTRIBUTION*

Is there a mechanistic basis for choosing a
distributional family?

Is the shape of the distribution likely to be
dictated by physical or biological properties or
other mechanisms?

Is the variable discrete or continuous?
What are the bounds of the variable?
Is the distribution skewed or symmetric?

If the distribution is thought to be skewed, in
which direction?

What other aspects of the shape of the
distribution are known?

How well do the tails of the distribution
represent the observations?

*Source: U.S. EPA, 1997b

that adequately characterizes variability or uncertainty and is consistent with the mechanism underlying
the data. For example, a log-logistic distribution would not necessarily be selected over a 2-parameter
lognormal distribution simply because it was ranked higher in a GoF test by a statistical software
package. Some distributions (e.g., normal, lognormal) are well known among risk assessors. The
statistical properties for these distributions are well understood and the formal descriptions can often be

brief.

Important factors to consider in selecting a PDF are described in Exhibit B-3. An initial step in
selecting a distribution should be to determine if the random variable is discrete or continuous.
Continuous variables take any value over one or more intervals and generally represent measurements
(e.g., height, weight, concentration). For a continuous variable, a mathematical function generally
describes the probability for each value across an interval. Discrete variables take either a finite or
countably infinite number of values. Unique probabilities are assigned to each value of a discrete
variable. The number of rainfall events in a month is an example of a discrete random variable, whereas
the amount of rainfall is a continuous variable. Similarly, the number of fish meals per month is a
discrete variable, whereas the average size (mass) of a fish meal is continuous.

Another important consideration is whether there are plausible bounds or limits for a variable.
For example, it is highly unlikely that an American adult will weigh less than 30 kg or more than 180 kg.
Most exposure variables may assume any nonnegative value within a plausible range. Therefore,
distributions will generally be truncated at a minimum of zero (or higher), or a probability distribution
that is theoretically bounded at a nonzero value may be specified (see Table B-3). A more detailed
discussion of factors to consider in selecting a PDF and specifying parameter values is provided below.
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B.5.1 CONSIDERING THE UNDERLYING MECHANISM

There may be mechanistic reasons depending on known physical or biological processes that
dictate the shape of the distribution. For example, normal distributions result from processes that sum
random variables whereas lognormal distributions result from multiplication of random variables. A
Poisson distribution is used to characterize the number of independent and randomly distributed events in
a unit of time or space. An exponential distribution would describe the inter-arrival times of independent
and randomly distributed events occurring at a constant rate. If, instead, the elapsed time until arrival of
the k™ event is of interest, then the appropriate probability distribution would be the gamma distribution
(Morgan and Henrion, 1990).

rz |n all cases, it is incumbent on the risk assessor to explain clearly and fully the
reasoning underlying the choice of a distribution for a given exposure
variable—primarily from a mechanistic standpoint if possible.

Table B-2 lists some of the probability distributions that may commonly be used in PRA. This is
not an exhaustive list, and the scientific literature contains numerous examples with alternative
distributions. Where practicable, a mechanistic basis is presented for the choice of the distribution. For
some distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is
unlikely that a chemical or biological process will yield a random variable with that particular shape.
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of
information that is available to characterize a specific random variable. Preliminary distributions are
discussed in Section B.2.0 and Table B-4. Because many of the distributions given in Table B-2 can
assume flexible shapes, they offer practical choices for characterizing variability.

Table B-2 also illustrates probability distributions (both PDFs and CDFs) commonly used in
PRA. While intuitively appealing, identifying a mechanistic basis for a distribution can be difficult for
many exposure variables; however, it may be relatively apparent that the variable is bounded by a
minimum (e.g., ingestion rate > 0 mg/day) and a maximum (e.g., absorption fraction < 100%), or that the
relevant chance mechanism results in a discrete distribution rather than a continuous distribution, as
described above.

For each distribution, one or more examples with different parameter estimates are given to
demonstrate the flexibility in the shape of the PDF. In addition to the descriptions of the distributions in
Tables B-2, Table B-3 provides a summary of the parameters and theoretical bounds that define the
PDFs. For a further discussion of characteristics of PDFs see Thompson, 1999. Figures (a-h)
immediately following Table B-2 present examples of PDFs and the corresponding CDFs for
distributions commonly used in PRA.
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Table B-2. Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)
Beta Describes a continuous random variable with | Absorption fraction bounded by 0 and 100%;
Figure (e) finite upper and lower bounds. This fraction of time an individual spends indoors.
distribution can take on very flexible shapes,
but generally does not have a mechanistic
basis.
Binomial Describes a discrete random variable produced | The number of animals with tumors (or some
by processes that: (1) occur in a fixed number | other quantitative outcome) in a chronic animal
n of repeated independent “trials”; (2) yield bioassay.
only one of two possible outcomes (e.g.,
“success” or “failure™) at each trial; and
(3) have constant probability p of “success”. A
binomial distribution is characterized by
parameters n, p, and x, representing the number
of trials, the probability of success of each
trial, and the number of successes,
respectively.
Exponential If instead of counting the number of events in | The length of time between two radiation
Figure (h) the Poisson process (below), one measures the | counts; length of time between major storm
time (or distance) between any two successive, | events; distance between impact points of two
random, independent events. artillery shells.
Gamma Similar to exponential except that time until Time until k™ radiation count; elapsed time until
Figure (g) occurrence of the k™ event in the Poisson k™" major storm event.
process is measured (rather than time between
successive events). Reduces to exponential
when k=1.
Lognormal Multiplication of a large number of random Chemical concentrations in environmental
Figure (b) variables, or equivalently adding the media; media contact rates; rates and flows in
logarithms of those numbers, will tend to yield | both fate and transport models. Because the
a distribution with a lognormal shape. basic risk equation is multiplicative,
distributions of risk are generally lognormal. In
practice, lognormal distributions often provide
good fits to data on chemical concentrations in
a variety of media (Gilbert, 1987; Ott, 1990).
Normal Addition of independent random variables, The “Gaussian Plume Model” for the dispersion
Figure (a) with no one variable contributing substantially | of air pollutants is based on the idea that, at a

to the total variation of the sum, will tend to
yield a distribution with a normal shape. This
result is established by the central limit
theorem.

micro level, individual parcels of air, or
molecules of pollutants, are subject to many
random collisions from other molecules that act
together as if a large number of random
numbers were being added/subtracted from an
initial 3-dimensional description of a position.
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Table B-2. Examples of Selected Probability Distributions for PRA.

Distribution Mechanistic Basis Example(s)

Poisson Observed when counting the frequency of The number of counts of radiation that occur in
discrete events, where the events are a particular time interval; the release of synaptic
independent of one another, and randomly transmitter from nerve cells; the number of
distributed in space or time. Approximates the | artillery shells falling within a fixed radius; the
binomial distribution when sample size, n, is occurrence of major storm events in a month;
large and probability, p, is small. number of leaks in average length of pipe.

Triangular The PDF is shaped like a triangle, with Variability in shower droplet diameter.

Figure ©) parameters representing plausible bounds and a | Uncertainty in the mean air exchange rate in a
most likely value (i.e., mode). Thisis a shower.

“rough” probability model that generally

describes a random variable based on limited

information rather than mechanistic basis.
Uniform The PDF is shaped like a rectangle, with Variability in the air ventilation rate in a house.
Figure (d) parameters representing plausible bounds.

This is a “rough” probability model that

generally describes a random variable based on

limited information rather than a mechanistic

basis.
Weibull Originated in reliability and (product) life Examples for exponential and gamma would
Figure () testing as a model for time to failure or life also be appropriate for Weibull.

length of a component when the failure rate
changes with time. A very flexible model
taking a wide range of shapes. If the failure
rate is constant with time, the Weibull reduces
to the exponential distribution.
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B.5.2 EMPIRICAL DISTRIBUTION FUNCTIONS (EDFs)

In some cases, an empirical distribution function (EDF) may be preferred over fitting the data set
to a hypothesized distribution. EDFs, also called empirical cumulative distribution functions (ECDF),
provide a way to use the data itself to define the distribution of the relevant variable. Briefly, an EDF for
a random variable is described by a step function based on the frequency distribution of observed values.
An EDF for a continuous random variable may be linearized by interpolating between levels of the
various bins in a frequency distribution. The CDF for a linearized EDF appears as a line, rather than
steps. Example B-3 at the end of this Appendix illustrates an EDF, linearized EDF, and beta distribution
(,=0.63, «,=2.85, rescaled to min=0, max=364) fit to percentile data for soil ingestion rates in children
(Stanek and Calabrese, 1995). A plausible range (i.e., minimum and maximum values) was imposed on
the data set for this example.

EDFs provide a complete representation EXHIBIT B-4
of the data with no loss of information. They
do not depend on the assumptions associated VARIATIONS OF THE EDF
with estimating parameters for theoretical
probability models. EDFs are designed to Linearized - Linearly interpolates between two
provide direct information about the shape of observations, yielding a linearized cumulative

the distribution, which reveals skewness, distribution pattern.

multimodality, and other features of the data

Extended - In addition to li izi b ,
set. However, EDFs may not adequately PRI = 1] Sl 1060 (1D | RN (B30 6 )

adds lower and upper bounds based on expert

represent the tails of a distribution due to judgment.

limitations in data acquisition. In the simplest

case, an EDF is constrained to the extremes of Mixed Exponential - Adds an exponential upper
the data set. This may be an unreasonable and/or lower tail to the EDF.

restriction if limiting the EDF to the smallest
and largest sample values is likely to greatly
underestimate the distributional tails. If this is an important source of uncertainty, the risk assessor may
choose to extend the tails of the distribution to plausible bounds or to describe the tails with another
distribution (see Exhibit B-4). For example, an exponential distribution may be used to extend the tails
based on the last 5% of the data. This method is based on extreme value theory, and the observation that
extreme values for many continuous, unbounded distributions follow an exponential distribution (Bratley
etal., 1987). As with other probability models, uncertainty in the plausible bounds of an EDF may be
reduced by obtaining additional information.

Advantages and disadvantages of using EDFs in PRA are discussed in detail in the Report of the
Workshop on Selecting Input Distributions for Probabilistic Assessments (U.S. EPA, 1999a).

B.5.3 GRAPHICAL METHODS FOR SELECTING PROBABILITY DISTRIBUTIONS

Graphical methods can provide valuable insights and generally should be used in conjunction
with exploratory data analysis. Examples of graphical methods are frequency distributions (i.e.,
histograms), stem-and-leaf plots, dot plots, line plots for discrete distributions, box-and-whisker plots,
and scatter plots (Tukey, 1977; Conover, 1980; Morgan and Henrion, 1990).

== Graphical methods are invaluable for exploring a data set to understand the
characteristics of the underlying population.
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Together with statistical summaries, graphical data summaries can reveal important characteristics of a
data set, including skewness (asymmetry), number of peaks (multi-modality), behavior in the tails, and
data outliers.

Frequency Distribution or Histogram

The frequency distribution, or histogram, is a graphical approximation of the empirical PDF.
Frequency distributions can be plotted on both linear and log scales. The general strategy for selecting
the number of bins to partition the data is to avoid too much smoothing and too much jaggedness.
Equation B-1 (U.S. EPA, 1999a) provides a starting point for estimating the number of bins based on the
sample size (n).

Numberof Bins=1+3322log,, n Equation B-1
Probability Plotting

Another method that may be used to visualize distributions and estimate parameters is probability
plotting, also referred to as linear least squares regression or regression on ordered statistics. This
technique involves finding a probability and data scale that plots the CDF of a hypothesized distribution
as a straight line. The corresponding linearity of the CDF for the sample data provides a measure of the
GoF of the hypothesized distribution. The general approach involves sorting the sample data in
ascending order and converting the ranks to percentiles. The percentile value for the i" rank is calculated
according to Gilbert (1987) as:

: i-05 _
Percentile = 100 x Equation B-2
An alternative formula is provided by Ott (1995):
Percentile = 100 x Equation B-3
n+1

Plotting positions given by Equations B-2 and B-3 are special cases of the more general formula given by
Equation B-4 (Helsel and Hirsch, 1992):
. i-a :
Percentile = 100 x ————— Equation B-4
n+1-2a

where a is a constant that varies from 0 (Equation B-3) to 0.5 (Equation B-2).

The percentiles are used to calculate the z-scores, which represent the number of standard
deviations away from the mean that a particular datum lies assuming the data are normally distributed.
For normal distributions, the data are plotted against the z-scores; for lognormal distributions, the data
are log-transformed and plotted against the z-scores. In both cases, parameters of the distribution can be
estimated from the least-squares regression line. When the hypothesized distribution is a poor fit to the
data, p-plots can yield misleadingly low estimates of the standard deviation (Cullen and Frey, 1999).
Both Gilbert (1987) and Ott (1995) provide excellent descriptions of the use of probability plotting to
derive parameter estimates for a given distribution. Probability plotting techniques with best-fit lines
have been used to estimate parameters for a wide variety of distributions, including beta, Weibull, and
gamma.
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Cullen and Frey (1999) point out that probability plotting may not be a primary choice for
selecting a fitting distributions because the method violates an important assumption of least squares
regression—independence of the observations (see Appendix A, Exhibit A-5). This is because the rank-
ordered data are no longer independent. Nevertheless, this approach may yield good results when the fit
is good and the choice of distributions is somewhat subjective.

B.5.4 PARAMETER ESTIMATION METHODS

As arule, there are often a number of different methods available for estimating a given
parameter. The most appropriate method to apply may require judgment, depending on the relative
difficulty in applying a method for a particular parameter, as well as the desired statistical properties of
the method. The following simple example provides a useful analogy. Suppose that the parameter of
interest, A, is the total area of an approximately square exposure unit. If the exposure unit is a perfect
square, and the length of one side (L,) is known, the area would be equal to L,? (i.e., for a square, A=L}?).
Suppose L is unknown, but two independent measurements, X, and X,, are available to estimate the
length (see Exhibit B-5). If it is assumed that the random variable, L, has a probability distribution with
mean p, then the area of the square piece of property is A=u?. What is a reasonable estimate of the area

(i.e., A = /fl2 ) based on X, and X,? Three plausible methods for calculating [12 are given below.

L, (xl + xzjz EXHIBIT B-5
1. = ——=

2 ESTIMATING THE AREA OF A

HYPOTHETICAL EXPOSURE UNIT

2 XZH+ XS
2. ,lez -1 72 5 2 f
Exposure X
Unit 2
3. :ucz = Xl X X2 ‘

_X1_>

Because these three estimators will, as a rule, give different answers, it may be useful to set criteria for
selecting which one gives the “best” answer. Some of the statistical criteria that are used for this purpose
are consistency, efficiency, robustness, sufficiency, and unbiasedness (see Exhibit B-6). It turns out, each
method is relatively easy to implement, but the third method is preferred because it is a more efficient
estimator.

In many cases, particularly if a model is complex, potential estimators of the unknown
parameters are not readily apparent. To assist in developing estimators, several general methods have
been developed. Exhibit B-7 lists some of the more common parameter estimation methods.

Perhaps the simplest method is the method of matching moments (MoMM), also called the
method of moments. MoMM is appropriately named, as it involves expressing the unknown parameters
in terms of population moments and then “matching”, or equating the sample moments to the population
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moments. For example, the sample mean ( X))
and standard deviation (s) are estimators for the
corresponding population parameters (i and o).

Maximum Likelihood Estimation (MLE)
is a commonly applied method, that is often
thought of as a parameter estimate for which the
observed data are most “likely”. The likelihood
function is defined for independent continuous
random variables as follows:

n

L(8,, 8,,...8) = M f(x,6,, 6, ...
=1

64

The likelihood function is evaluated based on the
product of the PDF for each value of x. The
parameters of the probability model, (8,), are
chosen to maximize the likelihood function value
and thereby are most likely to produce the
sample data set (Cullen and Frey, 1999).

It has also been demonstrated that MLE
yields estimators that generally have good
properties when evaluated by the criteria listed
above. In some cases (e.g., for smaller sample
sizes), these estimators are not unbiased;

EXHIBIT B-6

CRITERIA FOR EVALUATING PARAMETER
ESTIMATION METHODS*

Consistency A consistent estimator converges to
the “true” value of the parameter as
the number of samples increases.

An efficient estimator has minimal
variance in the sampling distribution
of the estimate.

Efficiency

A robust estimator is one that works
well even if there are departures from
the assumed underlying distribution.

Robustness

A sufficient estimator is one that
makes maximum use of information
contained in a data set.

Sufficiency

Unbiasedness An unbiased estimator yields an
average value of the parameter
estimate that is equal to that of the

population value.

*Source: Cullen and Frey, 1999

however, this can often be accounted for by “adjusting” the estimator. A familiar example of this

adjustment is in estimation of the variance of a
normal distribution. The MLE for the variance is
biased by a factor of ((n-1)/n), but this is easily
corrected by multiplying the MLE by (n/(-1)).

For some distributions, calculations of the MLE
are straightforward. For example, MLE for
parameters of a normal distribution are given by
the mean and standard deviation of the sample
data, the same as MOMM. MLE for parameters of
a lognormal distribution are given by the mean
and standard deviation of the log-transformed
data, which is different from MoMM. In general,
MLE calculations are complex, and commercial
software such as @Risk and Crystal Ball® may be
used. A more detailed discussion of the derivation

ExHiIBIT B-7
PARAMETER ESTIMATION METHODS

e Method of Matching Moments
e Maximum Likelihood

e Minimum Chi-Square

e Weighted Least-Squares

and properties of MoMM and MLE can be found in the statistics literature (e.g., Chapter 5 of Mood and
Graybill, 1963; Chapter 9 of Mendenhall and Scheaffer, 1973; Section 6.5 of Law and Kelton, 1991;

Section 5.6 of Cullen and Frey, 1999).
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B.5.5 DEALING WITH CORRELATIONS AMONG VARIABLES OR PARAMETERS

Correlations between exposure variables or between parameters of the probability distribution
may be important components of a probabilistic model. Correlation is a measure of association between
two quantitative random variables. Two random variables may either be positively or negatively
correlated. A positive correlation exists between two variables if the value of X, increases as the value
of X, increases. For example, higher hand dust lead levels have been associated with higher pediatric
blood lead levels (Charney et al., 1980). A negative correlation exists between two variables if the value
of X, increases as the value of X, decreases. For example, studies suggest the ingestion of soil and dust
particles increases as particle size decreases (Calabrese et al., 1996).

A first step in identifying correlations is to assess the possible physical and statistical
relationships that exist between variables. In an ecological risk assessment (ERA), for example, the
largest surf scoter (diving duck) does not consume the least amount of food, nor does the smallest surf
scoter consume the greatest amount of food. Random sampling of body weight and ingestion rate as
separate parameters, however, allows for these two possibilities. Neglecting a correlation between two
variables may restrict (underestimate) the tails of the ecological Hazard Quotient (HQ) for each chemical
of concern (COC), which are frequently the areas of the distribution of most interest.

The degree to which correlations affect the output of a risk model depends on: (1) the strength of
correlations between the two variables, and (2) the contribution of the correlated variables to overall
variance in the output (Cullen and Frey, 1999). Therefore, it is useful to conduct a preliminary
sensitivity analysis to assess the impact of alternative correlation assumptions on the model output. If the
impact is significant, correlations should be identified and accounted for in the PRA.

There are several approaches to account for dependencies in MCA including: (1) modifying the
model to include the correlation; and (2) simulating dependence between variables for sample generation
(Cullen and Frey, 1999). Modifying the model is preferred as simulation techniques cannot capture the
full complexity between model inputs. However, when this is not possible, dependencies between
variables can be simulated and approximated by correlation coefficients and bivariate normal
distributions.

Correlation coefficients are a numerical measure of the strength and direction of the relationship
between two variables. Sample correlation coefficients measure the linear relationship between
variables. However, if two variables are from different probability distributions, it is unlikely that they
are linearly related. Consequently, simulation software programs such as Crystal Ball® and @Risk can
be used to calculate and employ the nonparametric statistic, Spearman’s Rank Correlation Coefficients
(Rho) in simulating correlation between inputs. Rank Correlation Coefficients measure the linear
dependence not of the data values themselves, but of the rank value of the data. The ranks indicate
relative positions in an ordered series, not the quantitative differences between the positions. The
disadvantage of losing information by using the rank values (rather than the actual values) is offset by the
ability to correlate random variables from different distribution types (See Appendix A).

Exhibit B-8 gives an example of a straightforward approach to specifying a rank correlation
between two input variables in a one-dimensional Monte Carlo analysis (1-D MCA) for variability. A
range of correlations is explored as a form of uncertainty analysis on the distribution of intakes given a
fish advisory of 7.0 pg/day for a chemical.
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EXxHIBIT B-8

CORRELATION OF INPUT VARIABLES FOR 1-D MCA OF VARIABILITY

Intake Equation Intake = (CF x IR x FI x EF x ED)/(BW x AT)
Variables Description and Units Units Point Estimate or PDFv
CF concentration in fish ug/kg 25

IR fish ingestion rate kg/meal lognormal (0.16, 0.07)*

Fl fraction ingestion from source | unitless 1.0

EF exposure frequency meals/yr lognormal (35.5, 25.0)*
ED exposure duration years 30

BW body weight kg 70

AT averaging time days 10950

!Lognormal PDF parameters: arithmetic mean, standard deviation

» Correlation between IR and EF is suggested by Burger et al. (1999) study of 250 anglers on the Savannah
River, South Carolina. Moderate correlation (Kendall’s tau=0.17, p=0.04)

»  Uncertainty Analysis: 1-D MCA simulations of variability correlating IR and EF using Crystal Ball® 2000
(5,000 iterations, Latin Hypercube sampling). Spearman rank correlations: 0.10, 0.50, 0.90

Statistics of PDFv for Intake (ug/day) compared to Fish Advisory of 7.0 ug/day

Rank Correlation (r) 0.10 0.50 0.90

Intake Statistics (ug/day)

mean 1.6 1.8 2.0
50" percentile 1.1 1.1 1.1
95" percentile 4.4 5.4 6.5
97.5" percentile 5.7 7.0 9.0

»  For this example, only IR and EF are characterized by PDFs. They contribute approximately equally to the
distribution of intakes. Positive rank correlations have little effect on the median (50" percentile) of the
output distribution, but tend to widen the tails of the distribution. Increasing the correlation from 0.10 to
0.90 increases the 90" percentile from 4.4 to 6.5 ug/day, and the 97.5" percentile from 5.7 to 9.0 ug/day.

» If the fish advisory is 7.0 ug/day, uncertainty in the correlation coefficient may have important
consequences for the risk management decision.
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Correlations may also be specified for parameters of a probability distribution. This is an
important concept when designing a two-dimensional Monte Carlo analysis (2-D MCA) in which
parameters of the same PDFv might be otherwise be described by independent PDFu’s. A common
approach for correlating two parameters is to specify a bivariate normal distribution (Nelsen, 1986, 1987;
Brainard and Burmaster, 1992). A bivariate normal distribution allows for the distribution of one
variable to be sampled conditional on the other. This is a special case of a joint distribution in which
both x and y are random variables and normally distributed (as the conditional distribution of x or of y is
always normal) (Wonnacott and Wonnacott, 1981). Example B-4 further explains bivariate normal
distributions and demonstrates this approach applied to coefficients of a simple linear regression model
that relates contaminant concentrations in soil and dust.

The results of correlation analysis should be interpreted with caution. Two variables may be
associated due to: (1) a dependency between the two variables; (2) chance (two independent variables
appear dependent due to chance in the sampling procedure); and (3) variables not included in the analysis
(lurking variables) are affecting the two variables being analyzed. Likewise, a low correlation measure
does not necessarily mean the two variables are independent. As a lurking variable may cause the
appearance of an association between the two independent variables, it may also mask the association
between two dependent variables.

zz= Correlation describes a degree of mathematical association, not a causal
relationship between the two variables.

Efforts to extrapolate or predict correlations outside the range of observed values should also be
done with caution. For example, there may be a strong linear relationship between age and height in
children; however, it would be inappropriate to apply this correlation to adults. Additional caution is
needed when correlating more than two factors at a time. In general, because of the complexity of
specifying a valid covariance matrix when correlating more than two factors at a time, risk assessors may
need to consult a statistician to avoid generating misleading risk estimates.

B.5.6 CENSORED DATA

In order to define the exposure point concentration, estimates of summary statistics
representative of the entire distribution of data are needed (Helsel and Hirsch, 1992). Censored data
complicate the process of selecting and fitting PDFs and estimating parameter estimates. A censored
data set is a data set for which measurements above or below a certain threshold are not available. Left
censored data occurs frequently at Superfund sites, where samples for a number of chemicals are often
below the reporting limit. A censored datum (often denoted by ND) commonly represents a value of half
of the laboratory reporting limit.

Three general methods for estimating summary statistics for left censored data sets include:
(1) simple substitution; (2) distributional methods; and (3) robust methods (Helsel and Hirsch, 1992).
These methods may be evaluated based on the root mean squared error (RMSE) estimate, a measure of
the difference between the sample statistic (e.g., the sample mean, x ) and the true population parameter
(e.g., population mean, ).
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Methods which yield estimates closer to the true parameter value have lower bias, higher precision, and
lower RMSEs.

Simple Substitution Methods

Simple substitution methods entail substituting values equal to or lower than the reporting limit
in the data set. These surrogate values are then included in the calculation of the summary statistics and
in determining the distributional shape of the data set. Although this method is frequently used, it is
important to understand its limitations; depending on the surrogate value used (e.g., half the reporting
limit) the simple substitution method may yield biased parameter estimates (e.g., low estimates of the
mean) and may yield misleading distributional shapes. Studies such as those reported by Gilliom and
Helsel (1986) have determined, in terms of the RMSE, that simple substitution methods perform more
poorly than the distributional and robust methods described below.

Distributional Methods

With distributional methods, the entire data set is assumed to follow a theoretical distribution
(e.g., normal distribution). Assuming a theoretical distribution, MLE and probability plotting (p-plot)
methods provide summary statistics that best match the reported values of the data and the percentage of
samples below the threshold value. If the data fit the theoretical distribution exactly, or if the sample size
is large, both MLE and p-plots are unbiased methods. Often, however, the sample size is small and the
distribution deviates from a theoretical distribution. In this case, the MLE and p-plot methods may yield
biased and imprecise methods (Hesel and Hirsch, 1992).

Robust Methods

With robust methods, a theoretical distribution is needed. A theoretical distribution is fit to the
data above the detection limit by MLE or p-plot methods. Based on this assumed PDF, the value of the
data points below the detection limit are extrapolated and used in the summary statistics calculation.
Unlike the simple substitution method, these extrapolated values are not estimates for the data points;
rather, they are only used jointly to calculate summary statistics (Hesel and Hirsch, 1992). The method is
considered robust as it uses the actual values of the sample data, rather than the distribution above the
detection limit.
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B.5.7 TRUNCATION

Truncation refers to imposing a minimum and/or maximum value on a probability distribution.
The main purpose of truncation is to constrain the sample space to a set of “plausible values”. For
example, a probability distribution for adult body weight might be truncated at a minimum value of 30 kg
and a maximum value of 180 kg in order to avoid the occasional selection of an unlikely value (e.g., 5 or
500 kg). Given the subjectiveness involved in selecting truncation limits, such choices should clearly be
made with caution, and involvement of stakeholders who may be aware of site-specific circumstances.
For example, there may well be individuals who weigh more than 180 kg and less than 30 kg. The
purpose for truncating the tails of a distribution is to confine each risk estimate of a Monte Carlo
simulation to a combination of plausible input values. The advantage of truncating unbounded
probability distributions in PRA is that central tendency and high-end risk estimates will not be biased by
unrealistic values. The disadvantage is that the original parameter estimates of the nontruncated
distribution are altered by constraining the sample space. The bias in the parameter estimates increases
as the interval between the minimum and maximum truncation limit is reduced. For example, a normal
distribution with an arithmetic mean of 100 may be fit to a data set; imposing a truncation limit of
300 may result in a truncated normal distribution with an arithmetic mean of 85. The relationship
between the truncated and nontruncated parameter estimates can be determined analytically (Johnson et
al., 1995) or approximated using Monte Carlo simulations under both truncated and nontruncated
scenarios.

Table B-3. Theoretical bounds and parameter values for selected distributions.

Probability Distribution Parameters® Theoretical Bounds
Normal (1, 0) (o0, + )
Lognormal (1, 0) [0, + )

Weibull (o, B) [0, + =)
Exponential B) [0, + =)

Gamma (o, B) [0, + )

Beta (oy, @y, &, b) [, b]

Uniform (a, b) [a, b]

Triangular (@, m, b) [, b]

Empirical ( bounded EDF) (&, b, {x}, {p}) [a, b]

ta=minimum, b=maximum, p=mean, o=standard deviation, m=mode,
a=shape parameter, f=scale parameter, x=value, p=probability

Truncation is typically considered when using unbounded probability distributions (e.g., normal,
lognormal, gamma, Weibull) to characterize variability. Table B-3 gives the theoretical bounds for
selected probability distributions that may be more commonly used in PRA. Truncating the minimum
value may also be appropriate for distributions whose minimum is defined as zero (e.g., lognormal,
gamma, Weibull). Truncation is generally less important when a PDF is used to characterize uncertainty
in a parameter estimate (e.g., arithmetic mean), since distributions for uncertainty are often bounded by
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definition (e.g., triangular, uniform). Bounded continuous distributions, such as the beta distribution or
empirical distribution (see Section B.5.2) are not subject to the parameter bias of truncation, although
plausible minimum and maximum values must still be identified.

Identifying appropriate truncation limits that reflect “plausible bounds” for an exposure variable
will often require judgment. Given that most data sets represent statistical samples of the target
population, it is unlikely that the minimum and maximum observed values represent the true minimum
and maximum values for the population. However, there may be physiological or physical factors that
can aid in setting plausible truncation limits. For example, the maximum bioavailability of chemicals in
the gastrointestinal (GI) tract is 100%. Similarly, the solubility of chemicals in aquatic environments
(accounting for effects of temperature) will generally be less than the chemical solubility in water free of
particulates.

In general, sensitivity analysis can be used to determine if truncation limits are an important
source of parameter uncertainty in risk estimates. For exposure variables in the numerator of the risk
equation, the maximum truncation limit is of greatest concern. For exposure variables in the
denominator of the risk equation, the minimum truncation limit is of greatest concern. Details regarding
the fit of the tails of the probability distribution and the effect of truncation on the parameter estimates
should generally be included in the workplan.

B.6.0 ASSESSING QUALITY OF THE FIT

The quality of the fit of a distribution may be evaluated in several ways. Standard statistical
approaches are available to test the fit of a theoretical distribution to a data set (i.e., GoF tests). In
addition, alternative choices for distribution shapes and plausible bounds might be explored as a form of
sensitivity analysis. Together with graphical exploration (Section B.5.3), this information may be useful
when deciding whether or not to incorporate a specific type of distribution for an exposure variable into a
PRA.

1= GoF tests are one tool among several to assess the quality of a distribution.

Although GoF testing is a necessary part of distribution fitting, and tests are readily available with
commercial software, it is less important than mechanistic considerations or graphical data exploration
for choosing a candidate distribution. Examples of GoF tests are discussed below, and cautions
regarding GoF are outlined in Section B.6.3.

B.6.1 WHAT IS A GOODNESS-OF-FIT TEST?

Goodness-of-fit (GoF) tests are formal statistical tests of the hypothesis that the data represent an
independent sample from an assumed distribution. These tests involve a comparison between the actual
data and the theoretical distribution under consideration.

In statistical hypothesis testing the null hypothesis (H,) is assumed to be true unless it can be
proven otherwise. The “evidence” upon which we base a decision to reject or not to reject H, is a
random sample. Typically, we seek to reject H, in favor of H,. For example, with the two sample t-test,
the null hypothesis is that the means of two populations are equal (not different) and the alternative is
that they are different. This is expressed as:
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Hotthy, = 4,
Holly # 1,

Most often, the hypothesis test is used to show that the means are not equal (i.e., reject H, in
favor of H,) in order to state that there is a significant difference between the two populations at a
specified significance level (e.g., @=0.05). Thus, the hypothesis test is often referred to as a significance
test.

The p-value in a statistical test is calculated from a sample and represents the probability of
obtaining a value of the test statistic as extreme or more extreme as the one observed if H, is in fact true.
When the p-value is small it means either the null hypothesis is not true, or that we have witnessed an
unusual or rare event (by chance we drew an unusual sample that resulted in the extreme value of the test
statistic). Often a value of 0.05 or 0.01 is designated as a cutoff, or significance level «. If the p-value is
(e.g., p < 0.05), the null hypothesis is rejected in favor of the alternative, and we state that the test result
is statistically significant at level a.. This does not mean that we have proven H, is true. Rather, we are
saying that based on our sample results, it is unlikely that H, is true.

In a GoF test, the hypothesis test is set up the same way as a “traditional” hypothesis test, but the
outcome is viewed a little differently. In GoF tests, we generally seek to fail to reject H, because the null
hypothesis states that the data were obtained from a population described by the specified distribution
(F,). The alternative hypothesis is that the data were obtained from a population described by a different
distribution. In most applications of GoF techniques, the alternative hypothesis is composite—it gives
little or no information on the distribution of the data, and simply states that H, is false (d’ Agostino and
Stephens, 1986). This can be expressed as:

Hy:F = F,
H,:F#F,

where F, is a specific continuous distribution function, such as the CDF for a normal distribution.

rz GOF tests do not prove that the population is described by the specified
distribution, but rather that this assumption could not be rejected.

In general, p-values provide one metric of evaluating the fit of the distribution. For example, a p-value of
0.06 indicates that the null hypothesis (i.e., the assumption of a specified distribution) cannot be rejected
at «=0.05. Larger p-values indicate a better fit and stronger evidence that the distribution specified by
the null hypothesis may be appropriate. This guidance does not recommend an arbitrary cutoff for the
p-value. A risk assessor performing a GoF test generally should report the p-value and whether the fit is
considered “good” or “poor”.
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B.6.2 WHAT ARE SOME COMMON GOODNESS-OF-FIT TECHNIQUES?

The following GoF tests can also be found in most general statistical and spreadsheet software.
Both Crystal Ball® and @Risk software present the results of chi-square, K-S, and Anderson-Darling
tests in their fitting routines.

Shapiro-Wilk Test

The most widely used GoF test in risk assessment is the Shapiro-Wilk test for normality (Gilbert,
1987). This simple hypothesis test can determine whether or not a small data set (n < 50) is normally
distributed. The test can also be run on log-transformed data to assess whether the data are lognormally
distributed. D'Agostino's test may be used for samples sizes larger than those accommodated by the
Shapiro-Wilk test (i.e., n > 50) (d’Agostino and Stephens, 1986). In addition, Royston (1982) developed
an extension of the Shapiro-Wilk test for n as large as 2000 (Gilbert, 1987).

Probability Plot Correlation Coefficient Test

The correlation coefficient r (or the coefficient of determination, r?) between the data and the
z-scores of a normal probability plot (Filliben, 1975; Helsel and Hirsch, 1992) is similar to the W statistic
of the Shapiro-Wilk test. A detailed comparison of the Shapiro-Wilk test and the product correlation
coefficient test is given by Filliben (1975) and d’Agostino and Stephens (1986). Helsel and Hirsch
(1992) summarize critical r* values derived by Looney and Gulledge (1985) for the probability plot
correlation coefficient test.

Chi-Square Test

The chi-square test is a general test that may be used to test any distribution (continuous or
discrete), and for data that are ordinal (e.g., categories such as high/medium/low). Chi-square is a
measure of the normalized difference between the square of the observed and expected frequencies. For
example, by constructing a frequency distribution of the data with k adjacent bins, j=1...k, the number of
data points in the j" bin can be compared with the expected number of data points according to the
hypothesized distribution. Note that in the case of continuous, unbounded distributions (e.g., normal),
the first and last intervals may include [- «, a,] or [a,, + -] (Law and Kelton, 1991). The chi-square test
is very sensitive to the chosen number and interval width of bins—different conclusions can be reached
depending on how the intervals are specified. Strategies for selecting bins (e.g., setting interval widths
such that there are no fewer than 5 data points expected per bin) are given in the statistical literature
(d’Agostino and Stephens, 1986; Law and Kelton, 1991). The test statistic is compared with a value of
the chi-square distribution with (k - r - 1) degrees of freedom, where k is the number of sample values
and r is the number of parameters of the hypothesized distribution. As described in Section B.6.1, in
general, higher p-values suggest better fits.

Kolmogorov-Smirnov (K-S) Test

The K-S test is a nonparametric test that compares the maximum absolute difference between the
step-wise empirical CDF and the theoretical CDF. Because the maximum discrepancy is compared with
the test statistic, K-S is sometimes referred to as a supremum test (Cullen and Frey, 1999). In general,
lower values of the test statistic indicate a closer fit. The K-S test is most sensitive around the median of
a distribution, and, hence, it is of little use for regulatory purposes when the tails of distributions are most
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generally of concern (U. S. EPA, 1999a). Although it does not require grouping data into bins like the
chi-square test, critical values for the K-S test depend on whether or not the parameters of the
hypothesized distribution are estimated from the data set (Gilbert, 1987; Law and Kelton, 1991). The
Lilliefors test was developed to surmount this problem when the hypothesized distribution is normal or
lognormal (Gilbert, 1987).

Anderson Darling Test

The Anderson-Darling test assesses GoF in the tails (rather than the mid-ranges) of a PDF using
a weighted average of the squared differences between the observed cumulative densities. The
Anderson-Darling test is sometimes referred to as the quadratic test (Cullen and Frey, 1999). The test
statistic should be modified based on sample size prior to comparison with the critical value. Like the
K-S test, in general, lower values of the test statistic indicate a closer fit (i.e., if the adjusted test statistic
is greater than the modified critical value for a specified o, the hypothesized distribution is rejected).
The Anderson-Darling test may be particularly useful because it places more emphasis on fitting the tails
of the distribution.

B.6.3 CAUTIONS REGARDING GOODNESS-OF-FIT TESTS

There are many statistical software programs that will run GoF tests against a long list of
candidate distributions. It is tempting to use the computer to make the choice of distribution based on a
test statistic. However, GoF tests have low statistical power and often provide acceptable fits to multiple
distributions. Thus, GoF tests are better used for rejecting poorly fitting distributions than for ranking
good fits. In addition, for many distributions, GoF statistics lack critical values when the parameters are
unknown (i.e., estimated from the data). In practice, this limitation is often discounted and the critical
values are interpreted as a semi-quantitative measure of the fit. It is most appropriate to form an idea of
the candidate distributions based on some well reasoned assumptions about the nature of the process that
led to the distribution, and then to apply a GoF test to ascertain the fit (U.S. EPA, 1999a). Whenever
possible, mechanistic and process (i.e., phenomenologic) considerations should inform the risk assessor's
choice of a particular distribution rather than the results of a comparison of GoF tests (Ott, 1995). In
addition, the value of graphical evaluations of the fit cannot be overstated.

B.6.4 ACCURACY OF THE TAILS OF THE DISTRIBUTION

The tails of a distribution (e.g., < 5™ and > 95" percentiles) for an input variable are often of
greatest interest when characterizing variability in risk. Distributions fit to data may not characterize the
tails of the distribution in a way that represents the target population. In general, the importance of
uncertainty in the fit of the tails of particular distributions should be determined on a site-specific basis.
For exposure variables in the numerator of the risk equation, the upper tail is of greatest concern. For
exposure variables in the denominator of the risk equation, the lower tail is of greatest concern.

The tails of the input PDFs generally have a significant influence on the tails of the risk
distribution, especially for those variables that are ranked highest in a sensitivity analysis. Different
distributions may share the same mean and variance, but assume very different shapes. Experiments with
Monte Carlo simulations have demonstrated that the shape of the input PDFs may have a minimal effect
on the risk estimates in the tails of the probability distribution when the mean and variance of the input
PDFs are held constant (Hoffman and Hammonds, 1992; Finley and Paustenbach, 1994). Nevertheless, it
is generally a good practice in PRA to demonstrate that alternative choices of PDFs do not have a
significant effect on percentiles in the RME risk range.
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A common question when developing and evaluating Monte Carlo models is, “How many
iterations is enough?”. Since Monte Carlo sampling is approximately random, no two simulations will
yield the same results (unless the same starting point, or seed, of the random number generator is used).
A rule of thumb is that the stability of the output distribution improves with increasing numbers of
iterations, although there will always remain some stochastic variability. The stability is generally better
at the central tendency region of the output distribution than at the tails; therefore, more iterations may be
needed when the risk management decision is associated with the higher percentiles
(e.g., > 95" percentile). Risk assessors are encouraged to run multiple simulations (with the same inputs)
using different numbers of iterations in order to evaluate the stability of the risk estimate of concern. The
results of such an exercise should generally be reported to the Agency when submitting a PRA for
review. Note that while the speed of modern computers has essentially eliminated the issue for
1-D MCA (e.g., 10,000 iterations of most 1-D MCA models can be run in less than 1 minute), it may still
be an important issue for more complex modeling approaches such as Microexposure Event analysis
(MEE) and 2-D MCA (see Appendix D).

B.7.0 SELECTING PROBABILITY DISTRIBUTIONS BASED ON STATE OF KNOWLEDGE

Table B-4 summarizes preliminary strategies for proceeding with a PRA based on the amount of
available information. Recommended starting points for each of the three steps in the general process are
provided. This table provides guidance on candidate distributions that are consistent with the available
information, however, it is not intended to discourage the use or exploration of alternative choices.

== Table B-4 provides recommended preliminary strategies, not steadfast rules.
As an analyst works through the PRA, alternative distributions, estimation
methods, consideration of mechanism, and GoF tests may better guide the
selection process.

Case 1 represents the best scenario, in which the analyst has access to the raw data and a
sufficiently large sample size (or > 6 percentiles). In this case, the analyst has a variety of choices for
distribution fitting and estimating parameters. However, frequently raw data are inaccessible to the
analyst. Cases 2 and 3 have limited information available (i.e., mean and upper percentile) and,
therefore, have a narrower set of starting points. Case 4 is the most extreme scenario of data availability
requiring expert judgment on selecting and fitting distributions.
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Table B-4. Strategies for conducting PRA based on available information. Preferred methods in Case 1 (most
information) are identified by an asterisk (*).

Evaluation Step

Case 1

Case 2

Case 3

Case 4

Decreasing Information

A
y

Distribution Type

any in this category
Bounded
beta, Johnson’s SB

lognormal, gamma, Weibull

Bounded
beta, Johnson’s SB

Selection of
Parameter
Estimation /
Fitting Method

maximum likelihood*
regression methods
matching moments

minimize average
absolute percent error
(MAAPE) for
available statistics

exact agreement
between 2-parameter
PDF and available
statistics

Assessment of
Quality of Fit

Graphical Assessment
P-log Q plot*, P-Q plot*
residual % error plot*
P-P plot, Q-Q plot

GoF Tests
Anderson-Darling*

K-S
Chi-square

Graphical Assessment
P-log Q plot, P-Q plot
GoF Test
Chi-square,
Estimate p-value for
MAAPE using
parametric bootstrap (if
sample size is known)

Graphical Assessment
judgment based on
comparative analysis of
PDFs and CDFs

Estimation of
Parameter
Uncertainty

Large Sample
asymptotic normality
assumption
Medium Sample
nonparametric bootstrap
Small Sample
parametric bootstrap

Parametric bootstrap

generate random samples using the fitted distribution

(if sample size is known)

Data raw data of sufficiently three to five statistics two statistics one statistic
Availability large sample size
or
six or more percentiles
Selection of Nonnegative Continuous | Nonnegative Continuous case-by-case

basis using
expert judgment
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EXAMPLES OF FITTING DISTRIBUTIONS USING
GRAPHICAL METHODS, GOODNESS-OF-FIT, AND PARAMETER ESTIMATION

Example B-1. Empirical Distribution Function (EDF) for Soil Ingestion Rates

This hypothetical example illustrates how graphical methods can be used to select probability
distributions for variability based on percentile data reported in the literature. Table B-5 gives the
summary statistics that are reported by Stanek and Calabrese (1995) for average daily soil ingestion rates
among young children. Three options are explored for selecting a distribution: (1) empirical distribution
function (EDF) represented by a step function; (2) linearized and extended EDF; and (3) continuous
parametric distributions (beta and lognormal).

In order to specify an EDF, a plausible range (minimum and maximum) must be inferred using
judgment. Exposure factors such as ingestion rate are nonnegative variables (i.e., minimum >0); given
the relatively low value for the 25" percentile (10 mg/day), it is assumed that 0 mg/day is a reasonable
minimum value for this example. If children with pica for soil are excluded from the population of
concern, the maximum value may be inferred from the relatively shallow slope at the high-end of the
distribution. That is, the 90" percentile is reported as 186 mg/day while the 99" percentile is 225 mg/day,
an increase of only 39 mg/day; it is assumed that 300 mg/day is a plausible maximum value for this
example. Commercial software such as Crystal Ball® and @Risk can be used to input EDFs. Figure B-3
illustrates the basic step-wise EDF represented by the reported percentile values, as well as the
“linearized, extended EDF” (i.e., linear interpolation between reported values and extended lower and
upper tails).

An alternative to relying on a linear interpolation between the percentile values is to fit a
continuous probability distribution to the reported percentiles. Since the original data are unavailable,
standard GoF tests for the EDF, such as K-S and Anderson-Darling (d’Agostino and Stephens, 1986),
cannot be applied. Note that computer software (e.g., Crystal Ball®, @Risk) will provide test statistics
and corresponding p-values, however, these results will (inappropriately) reflect the number of percentile
values reported rather than the sample size of the original data. Nevertheless, graphical methods may be
employed to assess the adequacy of the fit of various PDFs. In this example, a beta distribution and
lognormal distribution were fit to the EDF using Crystal Ball®. Figure B-4 illustrates the selected
statistics for both distributions.

The beta distribution appears to more closely match the reported percentile values, especially at
the upper tail of the distribution. The lognormal distribution has an unbounded maximum that, for this
example, results in an extreme overestimate of the 95" and 99" percentiles. The beta distribution, by
definition, is bounded at 0 and 1, and rescaled in this example to a maximum of 364 mg/day. This
analysis would support the use of a beta distribution in a Monte Carlo simulation.
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Table B-5. Selected statistics for reported and fitted distributions for ingestion rate (mg/day).

Summary Reported Linearized, Beta Lognormal
Statistic Values Extended EDF Distribution® | Distribution?
minimum - 0 0 0
25" percentile 10 10 13 11
50™ percentile 45 45 44 31
75" percentile 88 88 100 86
90™ percentile 186 186 165 216
95™ percentile 208 208 205 375
99" percentile 225 225 322 3346
maximum -- 300 364 + o0

‘parameters of best-fit beta distribution: «;=0.63, .,=2.85, min=0, max=364.
2parameters of best-fit lognormal distribution: p=97.6, 6=291.8.

1.00

0.75

0.50

0.25

cumulative probability

200
Ingestion Rate (mg/day)

250 300

Figure B-3. Comparison of step-wise EDF and linearized EDF for ingestion rate. The upper and lower tails of both
distributions are extended to a plausible range of [0, 300] mg/day.
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Figure B-4. Graphical assessment of beta and lognormal distributions fit to the cumulative
distribution reported in the literature (circles). The beta distribution provides a closer fit to the
percentile values in this example.
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Example B-2. Variability in Lead Concentrations in Quail Breast Tissue

This hypothetical example demonstrates how the combination of graphical methods, GoF tests,
and parameter estimation techniques provides strong evidence for selecting and fitting a lognormal
distribution. Assume lead concentration in quail is an important variable for a food web model. Site-
specific data (n=62) are used to estimate inter-individual variability in concentration (Table B-6). The
histograms in Figure B-5 show lead concentrations in quail breast tissue collected near a settling pond at
a plating works. Equation B-1 indicated that 7 bins is an appropriate starting point. The result (top left
panel, Figure B-5) suggests that approximately 80% of the values are < 200 ppm and that the probability
distribution for variability may be described by a nonnegative, right-skewed distribution (e.qg.,
exponential, Weibull, lognormal, etc.). However, additional bins are needed to better understand the
low-end of the distribution. After increasing the number of bins from 7 to 16 (top right panel,

Figure B-5), graphical evaluation continues to suggest that the distribution is unimodal right skewed.
The bottom panel of Figure B-5 illustrates that increasing the number of bins would not provide better
resolution of the low-end of the distribution. For these data, 16 bins appear to provide a reasonable
balance between too much smoothing and too much jaggedness.

Probability plots can be used to visually inspect the GoF of a specified distribution to the data,
and, because the hypothesized distribution yields a straight line, the plots are particularly useful for
evaluating deviations at the tails. In addition, parameter estimates can be obtained from the regression
lines fit to the data, as discussed below. For this example, two lognormal probability plots are explored
to evaluate how well the data can be described by a lognormal distribution (Figure B-6). The top panel
gives the z-score on the abscissa (the “x” axis) and In[concentration] on the ordinate (the *y” axis), while
the bottom panel gives In[concentration] on the abscissa and z-score on the ordinate. Plotting positions
for both methods were calculated using Equation B-2. Equally plausible parameter estimates can be
obtained from regression lines using either plotting method; however, the approach shown in the top
panel may be easier to implement and interpret.

Despite the relatively large sample size of n=62, GoF tests generally fail to reject lognormality
(i.e., normality of the log-transformed data) in this example. For the probability plot correlation
coefficient test (Filliben, 1975; Looney and Gulledge, 1985), if r < r* (the value for r at a specified «),
normality is rejected. For this example, r is 0.988, and r* is between 0.988 and 0.989 for n=62 and
«=0.25; therefore, the p-value for the concentrations is approximately 0.25 and one fails to reject
lognormality at o < 0.25. D’Agostino’s test yields essentially the same conclusion, with a calculated
Y value of -1.9166. For this data set, with n=62 and «=0.10, one rejects normality if Y <-2.17 or
Y > 0.997 (see Table 9.7 in d’Agostino and Stephens, 1986); therefore, since Y is within this interval, one
fails to reject the normal distribution. However, for «=0.20, the rejection criteria is [Y < -1.64 or
Y >0.812], Y falls outside the low-end of the interval, resulting in a rejection of the normal distribution.
For this data set, the p-value associated with d’Agostino’s test is slightly less than 0.20 and one fails to
reject normality at o < 0.20.
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Figure B-5. Histograms of lead concentrations in quail breast muscle (n=62). The top left panel shows the result
with seven bins; the top right panel shows the result with sixteen bins; the bottom panel uses bin widths of 10 ppm
to highlight the lower tail (< 250 ppm) of the distribution.

Table B-6. Sample values of lead concentration (ppm) in quail breast muscle (n=62).

0.45 15.8 36.6 57 91 173 265
2.1 16 40 59.6 94.2 175.6 322
5.4 16.7 40.1 61.4 99 176 490
7.8 21 42.8 62 107 177 663.4
7.8 23 44 64 109 205 703
8.8 24 46 64 111 239 1231

11.8 24.8 47 84.6 149 241 1609

12 29.2 49 86.6 149 245 1634
15 35.5 53 86.8 154 264
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Different methods for obtaining the parameter estimates for the lognormal distribution can be
explored in this example. For the lognormal distribution, MLE and MoMM simply require calculating
the mean and standard deviation of the log-transformed sample data. For the lognormal probability plot
method, the parameters can be obtained directly from the least squares regression line expressed as
follows:

In(x) =[slope]z +[intercept] Equation B-5

such that exponentiating the intercept will give the geometric mean (GM) and exponentiating the slope
will give the geometric standard deviation (GSD) (see Footnote 3 of Table B-7). Both the MLE and
MoMM estimates will generally match the arithmetic mean of the log-transformed data (i.e., intercept)
determined from lognormal probability plots; however, estimates of the standard deviation (i.e., slope)
will vary (Cullen and Frey, 1999). In general, the probability plot method yields estimates of the
standard deviation that are less than or equal to that of MoMM and MLE, and the results yield closer
estimates as the correlation coefficient of the probability plot increases (Cullen and Frey, 1999).

Table B-7 summarizes the parameter estimates using MLE, MoMM, and the two lognormal probability
plotting techniques described above. The corresponding parameter estimates for the untransformed data
are also presented.

In this example, the strong linearity of the probability plots (r>=0.98) shown in Figure B-6 is an
indication that a lognormal distribution is a reasonable model for describing variability in concentrations.
The tails of the distributions fit the data fairly well, although the bottom panel suggests that the
lognormal distribution slightly overestimates the lower tail. Furthermore, the parameter estimates of the
lognormal distribution using probability plotting closely match the estimates using MLE and MoMM.

Table B-7. Parameter estimates for lognormal distribution of lead concentrations (ppm).
Log-transformed Untransformed

3
Parameter Estimation : : Data : : Data
Method Arithmetic Arithmetic Arithmetic Arithmetic

mean [ /1 ] stdev [T ] mean [ /1 ] stdev [T ]

Maximum Likelihood

Fetmats (MLD) 4175 1522 207 626
M?ﬂiﬂéf&”ﬁﬁ'ﬂ}g 4175 1522 207 626
Log Probability Plot 2175 1507 203 597
Log Probability Plot 2175 1543 214 670

! east squares regression line for Figure B-6, top panel.

?|_east squares regression line for Figure B-6, bottom panel.

®For a lognormal distribution, the following equations can be used to convert parameters of the normal distribution of
log-transformed data to corresponding parameters of the lognormal distribution of untransformed data. Assume p* and
o* are the arithmetic mean and standard deviation, respectively, for the normal distribution of log-transformed data.

geometric mean = exp[ u*]

geometric standard deviation = exp[o™*]

arithmetic mean = exp[u * +050 *?]

i 05
standard deviation = exp[,u*](exp[a *2]exp[o ** —1])
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Figure B-6. Lognormal probability plots of lead in quail breast tissue. Top panel gives z on the abscissa and
In[concentration] on the ordinate. Bottom panel gives concentration (log scale) on the abscissa and z on the
ordinate. Equally plausible parameter estimates can be obtained from regression lines using either plotting
method. Bottom panel requires an additional step to express the equation that yields parameter estimates
[In(x)=(slope) z + (y-intercept)], where the slope estimates the standard deviation of In(x) and the y-intercept
(at z=0) estimates the arithmetic mean of In(x).
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Example B-3. Variability in Meal Sizes Among Consuming Anglers

A creel survey of anglers consuming contaminated fish was performed to estimate variability in
fish meal sizes. The anglers were asked how many people would eat their fish. The lengths of the fish
were measured and a regression equation was used to calculate the corresponding weights. The portion
of the fish mass that is consumed was assumed to be 40% (e.g., fillets). Results given in Table B-8 are
expressed in units of grams of fish per meal. Table B-8. Meal size (g/meal) (n=52).

. . 65 182 310 405
The appearance of the histograms (Figure B-7) o 508 T s
suggests that the sample (n=52) may have been selected from
a single distribution. 4 221 318 416
77 226 318 477
A normal probability plot of the meal sizes 90 241 327 531
(Figure B-8) shows a departure from linearity. Specifically, 110 248 332 572
there appears to be a “kink” in the probability plot at about 111 253 336 608
400 g/meal, suggesting that the sample may have been 133 260 337 745
obtamt(ajd fr:om two L_Jlrll(lque ('jlzt'rlbutéons.' B.?fh thedFllllben 143 261 350 831
testand S aplro-Wl test indicated a significant departure 150 281 351 907
from normality at «=0.01. Parameters may be read directly 63 303 360 1053
from the equations of the regression lines on the right hand
panel of the graph. MoMM and MLE gave similar estimates. 163 305 365 1189
174 305 390 1208
Meal Size in Consuming Anglers Meal Size in Consuming Anglers
30 14
12 +
10 1
9 3
c c
3] (7]
> =]
3 g
|I TR
0 200 400 600 800 1000 1200 1400 ©8g8gg8g8gge8g8g8gs8s
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Figure B-7. Histograms of meal size (n=52) among consuming anglers. Left panel uses 7 bins, while the right
panel uses 14 bins.
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Figure B-8. Probability plot of meal size data from consuming anglers. The left panel shows the combined
data, with a departure from linearity at ~ 400 g/meal. The right panel shows the data split between high
consumers (top line) and low consumers (bottom line); note that separate lognormal probability plots were
reconstructed for both subsets of the data. The point at which to “split” the distribution in the left panel is
somewhat subjective. The break would be more obvious if the two distributions did not overlap.

Example B-4. Bivariate Normal Distributions
THIS EXAMPLE PRESENTS...

This example introduces the bivariate
normal distribution to illustrate two concepts: (1) use | *  Description of the assumptions associated
of information on correlations in a Monte Carlo with the bivariate normal distribution

simulation; and (2) specifying distributions for »  Guidance on simulating the bivariate normal
uncertainty in parameter estimates. A brief distribution for two random variables
explanation of the bivariate distribution is presented «  Application of bivariate normal to a simple
followed by an example comparing assumptions of linear regression equation relating
no correlation and perfect correlation. A less contaminant concentrations in soil and dust
complex example of a method for addressing (see Figure B-9). Results are compared to
correlations in PRA is given in Exhibit B-8. the assumption of no correlation and perfect
correlation

Properties of a Bivariate Normal Distribution

One approach that can be used to correlate
two random variables is to specify a bivariate normal distribution, which allows for the distribution of
one variable to be sampled conditional on the other. A bivariate normal distribution is a special case of a
joint distribution in which both x and y are random independent normally distributed variables. A
bivariate normal distribution can be specified for all correlation coefficients including p=0, p=1,and
p=-1. The bivariate distribution has a three dimensional shape and for p=0, from a bird’s-eye view, is
perfectly circular. As correlation increases (i.e. moves towards -1 or 1) this circle narrows and flattens to
an elliptical shape, and finally for perfect correlation — =1 and p=-1) becomes a straight regression line
with a r’=1. In three dimensional space the probability of obtaining measurement pairs (x, y) in the
region is equal to the volume under the surface in that region. To completely specify the bivariate
normal, estimates of the arithmetic mean and variance of the two parameters, as well as the correlation
coefficient (uy and ., variances 0% and o?, , and correlation coefficient p) are needed.
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In a bivariate normal distribution, values of y corresponding to each value of x follow a normal
distribution (Snedecor and Cochran, 1989). Analogously, the values of x corresponding to each value of
y follow a normal distribution. Furthermore, if two random variables, X and Y, jointly follow a bivariate
normal distribution, the marginal distribution of X is normal with mean . and variance o2, and the
marginal distribution of Y is normal with mean ., and variance o,.

Conditional Distributions

Assume we are interested in the conditional distribution of X given a certain value for Y. For
example, if X and Y are positively correlated, we would expect that relatively high values of X tend to
correspond with relatively high values of Y. The conditional distribution of X given that Y=y, where y
represents a specific value for the random variable Y, is a normal distribution with:

mean = y +p2(y —p1,), and
Oy Equation B-6

variance = o2 (1- p?)

Likewise, the conditional distribution of Y given that X=x, is also normal with:

o
mean =y, + p——(x -ty ), and
O x Equation B-7

variance = g2 (1 - p?)
These general equations can be used to generate a correlated pair (X, Y), as described below.

*Note that the mean of the conditional distribution of X is a function of the given value of Y but the
variance depends only on the degree of correlation.

General Approach for Correlating X and Y

To generate a correlated pair (X, Y), first generate X using a random value Z, from the standard
normal distribution:

X=ly+0, xZ, Equation B-8

Next, express Y as a function of the conditional mean and variance of Y given X and a second standard
normal variate Z,:

Y=pu, to, xZ, Equation B-9
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and generate a correlated Y by plugging Equation B-7 into Equation B-9. Using algebra, the combined
equations yield the following simplified expression for generating Y:

(pxZ)+y1-p* xZ,

The important component of this equation is that two
random variates are needed (Z, and Z,).

Y=pu, to, Equation B-10

ExHIBIT B-9
An alternative, but less general approach STEPS FOR SIMULATING UNCERTAINTY IN
would be to obtain Y by first generating a normal LINEAR REGRESSION EQUATION USING A
variate X (Equation B-8) and then plugging that BIVARIATE NORMAL DISTRIBUTION TO
value into the regression equation of Y on X to obtain CORRELATE PARAMETERS (By, B;)

the associated value of Y. While this method

maintains a correlation between X and Y, it will (1) Select Z, from a standard normal distribution

underestimate parameter uncertainty. The results are 2=, 4

equal only for the special case of perfect correlation (2) Calculate B, using Equation B-8, where X=f3,
(p=1.0) between X and Y. Therefore, the more Ky=Ho and 04,=0%,

general bivariate normal distribution approach (given | (3) Select z, from a standard normal distribution
by Equations B-8 to B-10) is recommended for Z~N(0, 1)

correctly correlating X and Y because it provides a
more robust estimate of parameter uncertainty.

(4) Calculate B, using Equation B-10, where
Y=P,, k=Hy, 0°,=0%,, p=correlation between
Boand B,

Application of Bivariate Normal Distribution to
Correlate Concentrations of Zinc in Soil and Dust

Assume random sampling of soil and dust zinc concentrations occurs in a residential area.
Composite samples of soil and dust are collected from 21 locations such that samples are paired (i.e.,
each soil sample is co-located with a dust sample) (Table B-9). First the relationship between the zinc
concentration in soil and dust is evaluated using simple least-squares regression. Next, the bivariate
normal distribution for the slope (B,) and intercept (3,) is determined, yielding an arithmetic mean and
standard deviation for each parameter (.o, 0%, 1y, and 62;), and correlation coefficient p between 3,
and 3,. In this context, the bivariate normal distribution may be considered a distribution for uncertainty
in the parameter estimates.

Three simulation methods are employed to demonstrate the effect of assuming a bivariate normal
distribution for parameters vs. perfect correlation, or independent parameters. Specifically:

@ The slope and intercept of the regression line are described by a specific form of the bivariate
normal distribution (i.e., follow Steps 1, 2 in Exhibit B-9, and use Equation B-10 instead of
Step 4).

2 The slope and intercept of the regression line are described by a general form of the bivariate
normal distribution (i.e., follow Steps 1 to 4 in Exhibit B-9).

3 The slope and intercept of the regression line are described by independent normal distributions
(i.e., follow Steps 1-4 in Exhibit B-9, but omit the correlation coefficient p in Steps 2 and 4).
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For each approach, Monte Carlo simulations with 1=5,000 iterations were run to determine the
set of parameter values (3,, 3,) for a simple linear regression equation. Typically, the uncertainty in the
parameter estimates is not accounted for when simple linear regression equations are used to relate to
exposure variables in a model. Such an approach may fail to account for important sources of parameter
uncertainty. Figure B-10 (middle panel) illustrates the preferred approach for characterizing parameter
uncertainty based on the bivariate normal distribution. (Note that the correlation coefficient relating the
intercepts and slopes generated from the simulation is consistent with the correlation coefficient that
describes the bivariate normal distribution; this is a good check that the simulation was set up correctly
and run for a sufficient number of iterations). These results are contrasted with results using a form of the
bivariate normal (Equation B-10) that underestimates uncertainty (top panel) unless parameters are
perfectly correlated. In addition, the simplistic approach of sampling from independent normal
distributions (bottom panel), yields a “shot gun” scatter plot. Sampling from independent normal
distributions results in unlikely extreme combinations of the slope and intercept more often than the
correct bivariate normal approach; propagating this bias through a risk model may severely bias estimates
of uncertainty in risk.

Table B-9. Zinc concentrations in paired (i.e., co-located) soil and dust samples
ppm) for n=21 locations.

Sample Soil (X)) Dust (Y)) Sample Soil (X)) Dust (Y))
1 120 216 12 560 200
2 190 149 13 560 256
3 270 83 14 720 496
4 285 508 15 800 239
5 310 215 16 880 203
6 340 219 17 910 757
7 350 203 18 1035 676
8 380 101 19 1445 426
9 440 178 20 1600 522
10 480 232 21 1800 276
11 560 199
2,000
Bivariate Normal
Distribution for -
Parameters of the E
Regression Equation % 1,500
S y=0.193x + 174
B, mean 173.9 g r2 =024
variance | 4162.2 § 1,000 +
B, | mean 0.193 ?‘f R
é 500 . .
variance | 0.0063 ﬂ'//r
5 27857.4 G LR ’
* *
Cov (B,, B,) -4.2428 0
0 500 1,000 1,500 2,000
r -0.8254 Soil Zn Concentration (ppm)
Figure B-9. Simple linear regression of zinc concentrations in soil
and dust.
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Figure B-10. Results of Monte Carlo simulation
(n=5000 iterations) to estimate the slope and intercept of a

regression equation. Top panel reflects the bivariate normal
distribution for the special case that fails to capture the
parameter uncertainty; middle panel reflects the preferred
bivariate normal distribution with p=-0.825 based on
empirical paired data; bottom panel reflects sampling from
independent normal distributions.
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APPENDIX C

CHARACTERIZING VARIABILITY AND UNCERTAINTY
IN THE CONCENTRATION TERM

C.0 THE CONCENTRATION TERM AND THE EXPOSURE UNIT

Incomplete knowledge of the concentration of one or more chemicals in various exposure media
is often the major source of uncertainty in Superfund risk assessments. In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,

(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s). This appendix expands upon concepts introduced in Chapter 5.
This appendix does not provide detailed equations for performing calculations, but instead refers the
reader to other Environmental Protection Agency (EPA) guidance documents in which both the
recommended approaches and calculations are provided.

The concentration term is linked to the concept of an exposure unit (EU). For Superfund risk
assessments, an EU is the geographical area in which a receptor is randomly exposed to a contaminated
medium for a relevant exposure duration. Environmental sampling provides information about the
contamination within and around an EU. Multiple EUs may be defined at a site based on the choice of a
receptor, the exposure medium, and the nature of contact with the medium. For example, residential
exposures to children may involve exposures via soil and dust ingestion both at the primary residence and
recreational areas at a day care facility. Site-specific information regarding the activities of receptors
should guide assumptions about the receptor’s contact with exposure media.

1w Defining the EU is critical to the success of the remedial strategy, as it
affects the calculation of the concentration to which receptors are
exposed.

C.1.0 VARIABILITY IN PRA

In general, variability and uncertainty should be kept separate to the extent possible in any
probabilistic risk assessment (PRA). For example, assume a one-dimensional Monte Carlo Analysis
(1-D MCA) was developed to characterize variability in risk, but it combined a distribution for
uncertainty in mean concentration with distributions for variability in exposure variables. The result
would yield a single distribution for risk, however, each risk estimate would reflect both uncertainty and
variability and distinguishing between the two would not be possible. Therefore, EPA’s Guiding
Principles for Monte Carlo analysis recommends against mixing distributions of variability and
uncertainty in a 1-D MCA (U.S. EPA, 1997b) to avoid such ambiguities.

A fundamental concept in Monte Carlo analysis is that there is variability in exposure between
receptors (inter-individual variability) as well as day-to-day variability for each individual (intra-
individual variability). In most Tier 2 analyses (see Chapter 2), the goal of a 1-D MCA is to characterize
inter-individual variability in exposure and risk. Typically, probability distributions for exposure
represent variability (PDFv’s) between individuals in the average value over the entire exposure duration.
In this case, the exposure point concentration (EPC) should represent the average exposure concentration
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over the entire exposure duration. Because an EPC is calculated from a sample, there is uncertainty that
the sample mean equals the true mean concentration within the EU; therefore, to account for associated
uncertainty, the 95% upper confidence limit for the mean (95% UCL) is generally used for Superfund
risk assessments (U.S. EPA, 1992).

In a 1-D MCA, a point estimate for the EPC is combined with PDFv’s for other variables to yield
a probability distribution for risk. An alternative approach is to simulate long-term average exposures as
a series of consecutive short-term exposure events. This approach is referred to as MicroExposure Event
(MEE) Monte Carlo modeling, and is discussed in detail in Appendix D. In MEE modeling, the goal is
to develop PDFv’s for exposure variables that capture the event-to-event variability in exposures at the
individual level. The concept of an averaging time still applies, but generally to a shorter time frame.
For example, seasonal variability in exposure frequency might be expected among outdoor occupational
workers so that different PDFv’s are representative of inter-individual for each season. In this case, the
EPC continues to represent an average concentration within the EU, but it would be linked to season-
specific activity patterns. It may be important to develop two different weighted averages to reflect
season-specific activity patterns and locations that are more frequently contacted in the summer
compared with the winter, for example. As the time frame for the exposure scenario is shortened from
the entire exposure duration, to a season, to a day, to an individual event, the concentration term should
be reevaluated to assess the relevance of the assumption that concentrations contacted by the receptor are
represented by the mean of the measured sample.

The following discussion introduces concepts of temporal and spatial variability as they apply to
the estimate of the EPC for different exposure media and exposure scenarios. While the general rule of
thumb applies to all Monte Carlo models—use a measure of the average concentration within the EU
over the time frame of exposure—it is important to apply the site sampling data in a way that is
consistent with the exposure scenario.

C.1.1 TEMPORAL VARIABILITY

Temporal variability in chemical concentrations may be an important consideration when
developing a preliminary remediation goal (PRG) for any exposure medium (refer to Chapter 5 for a
comprehensive discussion of using PRA to evaluate PRGs). For example, wind erosion may change
chemical concentrations in surface soil over time; leaching may change concentrations in both subsurface
soil and groundwater; and bioaccumulation may result in increasing concentrations in predatory fish with
time. If possible, such factors should be considered early in the risk assessment process and included in
the conceptual site model.

Development of the EPC normally will depend on the averaging time relevant to the exposure
scenario and health endpoint of concern. In the shorter term, it may be unlikely that receptors are
exposed throughout the entire EU due to temporal (and spatial) variability in the contaminant and inter-
individual variability in activity patterns. Therefore, inter-individual variability in the EPC might be
expected, and a distribution of EPCs may be developed to represent differences in exposure among the
population. Variability in short-term exposure may be an important factor for assessing variability in
acute toxicity. However, over time, short-term variability in the EPC will tend to smooth out and
approach a long-term average concentration. A single estimate of the long-term average EPC may be
reasonable to use in assessing risks to the receptor population. This is true regardless of the underlying
distribution of the environmental sampling data (e.g., lognormal, normal, beta, etc.).
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While most chemicals regulated by the Superfund program are based on concerns for chronic
toxicity (e.g., lifetime cancer risk from exposure to a carcinogen for ten or more years), for some
chemicals, toxic effects occur with shorter exposure durations (e.g., nitrate in drinking water and
methemoglobinemia in infants). Differences between acute and chronic health endpoints are important
to consider for ecological receptors such as transient migratory species. Superfund guidance
distinguishes between acute and chronic exposure to provide risk assessors the option of evaluating risk
under different time frames. The EPC should be estimated within an EU during a period of time that has
toxicological relevance for the exposed population.

1= The time scale of the concentration term should match the time scale of
the toxicity criterion and exposure duration.

C.1.2 SPATIAL VARIABILITY

Spatial variability in chemical concentrations is also an important property to consider when
developing a PRG. Spatial variability arises from many factors, including the mechanism of
contamination, physical and chemical dilution and transformation processes, and physical characteristics
of the site (Cullen and Frey, 1999). Similarly, receptors may exhibit spatial variability in their contact
with an exposure medium. In general, receptors are assumed to have equal access to all areas within an
EU so that the concept of a long-term average concentration is applicable.

Often, the EPC is estimated without regard to the spatial patterns in contamination. The
sampling design yields a measure of the variability in concentrations that is assumed to be representative
of the receptor’s contact with the exposure medium. However, even when the sampling design is
representative (e.g., both are simple random samples within the EU), the concentrations may exhibit clear
spatial patterns that could be used to reduce uncertainty in the EPC. Geostatistics (see Section C.5.2 and
Appendix D) offers a wide range of techniques for incorporating spatial information into estimates of the
EPC. These techniques are particularly useful when there is uncertainty in the representativeness of site
sampling, due to a difference in scale between site sampling and the size of the EU, or the use of targeted
sampling designs that oversample areas within an EU believed to contain the highest levels of
contamination.

In point estimate risk assessments (Tier 1 of the PRA), the EPC is most often characterized by a
point estimate of the mean concentration, typically given by the 95% UCL for the mean to account for
uncertainty in the site characterization (U.S. EPA, 1992). Variability in concentrations is an important
consideration for determining appropriate statistical methods used to estimate the 95% UCL. In addition,
for some Monte Carlo models, a PDFv may be developed to determine the EPC for the exposure model.
A PDFv for the EPC may be warranted in short-term exposure scenarios, particularly when the sampling
density is relatively sparse in relation to the size of the EU (i.e., poor site characterization). For example,
a risk assessment may include a future use residential scenario (e.g., currently the site is undeveloped) in
which the EPC that is relevant to a potentially exposed population of children is the average
concentration within a 0.5 acre lot. If the soil sampling yields 100 measurements, but a small subset of
the samples (e.g., less than three) are available for any 0.5 acre area, the most appropriate measure of the
average concentration for a hypothetical residence may be the maximum detected concentration or a
single value from the PDFv in concentration among hypothetical receptors. In general, for any of the
EU’s that define a randomly located residence, the poor site characterization would be a source of
uncertainty in both a point estimate and probabilistic risk assessment.
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At the vast majority of sites, concentration data is the easiest data to obtain of all the exposure
variables. In cases of poor site characterization, risk managers may opt to perform a point estimate risk
assessment only using the maximum detected concentration and highly protective exposure assumptions.
In the scenario described above for 0.5 acre residential lots, it is possible that a residence would be
located in an area in which the average concentration is represented by the maximum detected
concentration in the sample. Should the risk manager opt for a Tier 1 point estimate risk assessment, the
use of the maximum detected concentration of a chemical on the site should ensure the performance of a
health-protective risk assessment within a smaller EU.

Consideration of variability is also warranted in short-term scenarios for ecological risk
assessment (ERA) when the EU is much smaller than the site (see Section C.3.1.1). For example, the
home range of the receptor populations may be relatively small in comparison to the spatial distribution
of sampling locations (e.g., benthic invertebrates living in the sediment at the bottom of a river or soil
invertebrates in a terrestrial habitat). In these cases, the receptor would be exposed to an area smaller
than the sampling grid or measure of areal sampling density. A value from the PDFv that characterizes
variability in the concentrations across a relatively large spatial scale may be used to define the EPC for a
receptor population at a smaller scale. Again, risk assessors should take care in designing a 1-D Monte
Carlo model when using a PDFv for the concentration term. It is unadvisable to mix a PDFv for the
concentration term with PDFv’s for other exposure scenarios when estimating risks within one EU. Use
of the PDFv in this manner would incorrectly suggest that the mean concentration varied for each
individual within the same EU according to the variability in concentration measured across a much
larger area. A preferred approach is to use a PDFv to obtain a point estimate that represents the EPC, and
then combine this point estimate with PDFv’s for other variables in the Monte Carlo simulation to
estimate risks in the small EU. If there are many EU’s at a site, or if the boundaries of EUs are
undefined, more advanced modeling approaches can be developed to efficiently run multiple scenarios.
Methods for characterizing exposure point concentrations for ecological receptors are further discussed
in Sections C.2 and C.3.

C.1.3 EXAMPLE OF TEMPORAL AND SPATIAL VARIABILITY

Exposure scenarios often require consideration of both temporal and spatial variability. The
MEE might be used to assess temporal variability by simulating long-term intake as the sum of individual
exposure events. The time step for MEE is an important consideration and will depend on the rate of
change of the most rapidly changing exposure variable. In addition, there should be a correspondence
between the time periods over which data were obtained and the time step used in the MEE model. For
example, when a MEE is used for the risk assessment, the concentration term selected at each time period
should match the “average” concentration within the EU appropriate for that particular time period.
Assume that the receptor is a residential child, and the time period is a single day, and the child may
contact only 1,000 square feet within the 0.5 acre (20,000 square feet) residential EU. The specific
1,000 square foot area may change with each day as the child chooses different areas in the yard to
frequent. Hence, the variability in the sample may be a more appropriate measure of the concentration
contacted by residential child receptor on a day-to-day basis than the long-term average within the
0.5 acre EU. Over the long-term, this receptor will be exposed to the entire EU and hence the average
contaminant concentration within the 0.5 acre EU. Note that the day-to-day variability in concentration
undergoes the familiar phenomenon of “regression to the mean” when considered over the long-term.
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C.1.4 SPATIAL AND TEMPORAL VARIABILITY FOR DIFFERENT EXPOSURE MEDIA
C.1.4.1 VARIABILITY OF CONCENTRATIONS IN SOIL

Surface soil is subject to erosion by wind and surface water runoff. Over time, concentrations in
surface soil may change, but generally at a slow rate relative to other media. The spatial variability of
chemical contamination is most often due to the mechanism by which the contamination occurred. For
example, particulate stack emissions will tend to fall in an even pattern downwind of the stack whereas
over-application of pesticides and chemical spills can result in a patchy pattern of contamination.

Subsurface soil is not subject to wind erosion, so concentrations change mostly due to
degradation processes or leaching of the contaminant to groundwater. At most Superfund sites,
concentrations of chemicals in subsurface soil will remain relatively constant.

C.1.4.2 VARIABILITY OF CONCENTRATIONS IN GROUNDWATER

Exposure to groundwater contamination mostly occurs at a fixed point in space (e.g., the
wellhead). Groundwater is subject to a variety of influences that can alter chemical concentrations
within this medium such as aerobic and anaerobic biodegredation, volatization, and absorption. Due to
these influences, monitored natural attenuation is an appropriate remedy under certain site conditions. If
a risk assessor wishes to use a measure of the long-term average of a concentration in groundwater, a
hydrogeologist should be consulted.

C.1.4.3 VARIABILITY OF CONCENTRATIONS IN SURFACE WATER

Concentrations in surface water can be very dynamic. Streams are constantly flowing and the
effects of mixing, dilution and evaporation can change the chemical concentrations in surface water over
relative short time periods. Any sampling of surface water is truly a “snapshot” in time. The sampling
methods used to characterize spatial and temporal variability of concentrations in surface water will have
a direct effect on the uncertainty in estimates of the average concentration over both short and long time
frames.

C.1.4.4 VARIABILITY OF CONCENTRATIONS IN SEDIMENT

In some situations, sediment may be considered a relatively stable medium, similar to soil.
Alternatively, sediment may be physically moved by currents, tides, the movement of ships and other
events. Trend analysis may be used to establish the long-term average sediment transport at a site. This
information could provide the basis for choosing a representative “average” concentration in the
sediment available to ecological receptors (Piest and Miller, 1975; Van Sickel and Beschta, 1983;
Walling, 1983; Meade et al., 1990).

C.1.4.5 VARIABILITY OF CONCENTRATIONS IN FISH

Concentrations in fish may vary due to a change in the availability of food and environmental
conditions. Factors that may be used to model population dynamics may include intensity of angler
harvest, death/attrition of the population, and the introduction of a predator species or a more adaptive
species. Inrisk assessments that include a fish ingestion exposure pathway, the activities of the angler
may be a more important factor in determining the EPC than the changes in concentrations in fish over
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time. For example, an avid recreational angler may harvest fish from different locations within a lake
and consume fish of different sizes and species. In this way, with the consumption of contaminated fish,
both the contaminated medium and the exposure point change throughout the exposure duration.

Unless, samples of fish are collected over time, knowledge of these factors will generally be
unknown. Concentrations of bioaccumulative chemicals in territorial fish (e.g., largemouth bass)
obtained in different locations will generally reflect the concentrations in the sediment in the individual’s
home territory. Concentrations of bioaccumulative chemicals in migratory fish will be more difficult to
predict as the fish will contact areas with varying sediment and surface water concentrations.

C.1.4.6 EXAMPLES OF TEMPORAL AND SPATIAL VARIABILITY IN THE CONCENTRATION TERM FOR
SELECTED EXPOSURE MEDIA

Whatever medium is considered in the development of EPCs, the risk assessor should be aware
that the EPC embodies aspects of both the spatial distribution of contamination, the movement of the
receptor, and possibly the contaminated medium within the EU. Table C-1 presents examples of sources
of temporal and spatial variability in the concentration term based on both the contamination in selected
exposure media and the receptor.

Table C-1. Examples of temporal and spatial variability in selected media for the concentration term in common

exposure scenarios.

Factor Soil Groundwater Fish
Temporal [Contaminant | none, if contaminant source is |* seasonal fluctuation in seasonal changes in species
Variability inactive groundwater table availability
« aerial deposition from  migration of contaminant bioconcentration
ongoing source emissions plume
affected by wind patterns
* degradation over time * natural attenuation long-term changes in population
dynamics
* volatilization fish tissue concentrations linked
to temporal variability in water
and sediment concentrations
* migration to groundwater physical and chemical processes
+ radioactive growth and decay
Receptor * changes in activity patterns [+ none, fixed location at dietary preferences for fish
and behaviors over time (e.g., | specific wellhead species
with age) « changes in well location cooking practices
over time
Spatial Contaminant | heterogeneity in  migration of contaminant migration of fish
Variability concentrations over a small plume, based on
area and with depth, including| hydrogeology and source
presence of hotspots emissions (e.g., bulk flow
* heterogeneity in soil or continuous source) changes in fish population
properties that influence structure
bioavailability
Receptor * daily activity patterns involve [+ none, fixed location at change in recreational habits,
contact with different areas of | specific wellhead and areas fished
the EU * changes in well location
over time
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C.2.0 NONRANDOM EXPOSURES

As discussed in Section C.1.2, in the long-term it is generally assumed receptors exhibit random
movement, such that there is an equal probability of contacting any area within the entire EU. Therefore,
the long-term exposure concentration will most likely be the arithmetic mean of the concentration within
the EU. However, in many situations, the assumption of random exposures in space may clearly be an
oversimplification. People’s behavior and preferences will cause them to access specific areas within an
EU with greater frequency than others. The same is true in terms of ecological receptors with specific
habitat preferences.
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Figure C-1. Spatial and temporal variability in contaminant concentrations in groundwater.

For example, groundwater concentrations may show a large variation when sampled from wells
in different locations (Figure C-1). Typically, residential receptors do not sample randomly from
different wells, but draw chronically from individual wells. In such a case, the EU is a single wellhead.
Fluctuations in the groundwater plume will depend on the hydrogeology of the site as well as the
seasonal fluctuations in the water table. In this hypothetical example, concentrations are declining over
time at distances nearest to the source, and concentrations are increasing as the plume moves farther from
the source.

Incomplete information regarding the behavior patterns of people and environmental systems can
be a large source of uncertainty in a risk assessment. Because of this, methods are being developed to
model spatial relationships (between the contaminant and receptor) and nonrandom exposures. Recently,
a quantitative technique to model nonrandom exposure has been proposed for ERA (Hope, 2000, 2001).
Briefly, this technique divides the EU into smaller subunits and uses information about the attractiveness
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of each subunit to assign a probability of the receptor occupying a given subunit for a period of time.
Receptor movements are modeled stochastically and a time-weighted average of all the subunits provides
a measure of the EPC. In some ecological risk assessments, telemetry data can be used to better
characterize the areas of contamination that overlap with habitats of selected species. Hoff (1998)
demonstrates an approach for American badgers (Taxidea taxus) in which telemetry data and
geostatistical modeling provide an improved relationship between contaminant concentrations, tissue
residues, and effects.

C.3.0 SOURCES OF UNCERTAINTY IN THE CONCENTRATION TERM

There are numerous potential sources of uncertainty in the estimate of the true mean
concentration within an EU. As discussed in Chapter 5 (Section 5.1.1), sources of uncertainty can be
grouped into four broad categories: sample data, location of the EU, behavior of the receptor, and from
miscellaneous sources (e.g., physical and chemical processes). Development of an uncertainty
distribution for the average concentration requires knowledge of the variability in chemical
concentrations within the EU (unless distribution-free approaches are used), the toxicity of the chemicals,
and the receptor’s behavior. These distributions should be developed by risk assessors with the concept
of the EU in mind. Differences in scale (e.g., small home range of an ecological receptor population
relative to the site sampling design) can be a major source of uncertainty in ecological risk assessments.
Methods for addressing such uncertainties in the concentration term are presented below. By
incorporating these methods into the quantitative uncertainty analysis, risk managers may more
effectively evaluate the importance of data-gaps and design subsequent rounds of site sampling to reduce
the uncertainty in the EPC.

C.3.1 QUANTIFICATION OF UNCERTAINTY BASED ON THE SIZE OF THE EXPOSURE UNIT

Site characterization sometimes occurs before an EU has been defined. Therefore, an EU may be
smaller than an entire site, equal to the site itself, or larger than the site. These three conditions lead to
different conclusions and methods about the determination of the EPC. The most complex situation is
when the EU is smaller than the site and the site can contain multiple EUs. For future scenarios in which
the land use differs from the current land use, the difficulty in predicting the exact size and location of
EUs necessitates accounting for the uncertainty in the EU.

Composite sampling is often used to maximize site information. However, it is important to note
that the use of composite sampling influences the concentration term. If composite sampling is used
exclusively at a site, the actual maximum concentration present or the best estimate of this maximum
concentration will not be available. Depending on the time scale of the toxic effect or whether acute
toxicity should be considered, this lack of knowledge of the maximum concentration present may be a
large data gap. Risk assessors are urged to consider composite sampling and its ramifications for the
concentration term.

C.3.1.1 WHEN THE ExPOSURE UNIT IS SMALLER THAN THE SITE

The size of the EU will be different depending on the length of exposure. A receptor can access
a greater area if given more time. In almost all cases, the size of the EU for short-term exposure will be
smaller than the EU for long-term exposure. Therefore, in addition to the uncertainty associated with
sampling and analysis (which can be quantified with existing methods for calculating confidence
intervals), there is uncertainty about the location of the EU within the site.

Page C-8



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Appendix C ~ December 31, 2001

If contamination is evenly spread across the site, the location of the EU may not have any bearing
on the EPC. In such a case, uncertainty may depend on the sample size or density of measurements
within the EU relative to the entire site. In point estimate risk assessments, the concentrations of
chemicals at the sampling location that poses the greatest risk may be considered as estimates of the EPC
for this small EU. Using this “riskiest” sampling location as an estimate of the mean within an EU of
unknown location accounts for both the uncertainty associated with limited sampling within a single EU
and the uncertainty of the location within the site of the EU.

To express the uncertainty in location of the EU as a distribution, methods have been developed
to place an EU of a given size randomly about a site (Burmaster and Thompson, 1997). A concentration
term is developed for each of a large number of randomly located EUs. The distribution of these
concentration terms will express 